MHB RF's question at Yahoo Answers (linear independence, Wronskian).

AI Thread Summary
The discussion revolves around determining the linear independence of the functions y1(t) = te^(2t) and y2(t) = e^(2t) using the Wronskian. The Wronskian is calculated as W(y1, y2)(t) = -e^(4t), which does not vanish on the interval (0, 1). Since the Wronskian is non-zero, it indicates that the functions are linearly independent on that interval. This conclusion is based on the property that functions are linearly independent if their Wronskian is non-vanishing. Thus, y1 and y2 are confirmed to be linearly independent on (0, 1).
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

So I have a question from the topic of differential equations about linear independence/Wronskian...

The problem states: In this problem, determine whether the functions y1 and y2 are linearly dependent on the interval (0, 1).

y1(t) = te^(2t), y2(t) = e^(2t)

Please explain how to do this problem step by step because I have no clue what to do...
Thank you!

Here is a link to the question:

Differential Equations...Linear independence question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello RF,

For $n$ functions $y_1(t), y_2(t) , \ldots , y_n(t)$ which are $n-1$ times differentiable on an interval $I$, the Wronskian is defined by:
$$W(y_1, \ldots, y_n) (t)=
\begin{vmatrix}
y_1(t) & y_2(t) & \cdots & y_n(t) \\
y_1'(t) & y_2'(t) & \cdots & y_n' (t)\\
\vdots & \vdots & \ddots & \vdots \\
y_1^{(n-1)}(t)& y_2^{(n-1)}(t) & \cdots & y_n^{(n-1)}(t)
\end{vmatrix}\quad (t\in I)$$
In our case,
$$W(y_1, y_2) (t)=
\begin{vmatrix}
y_1(t) & y_2(t) \\
y_1'(t) & y_2'(t)
\end{vmatrix}=\begin{vmatrix}
te^{2t} & e^{2t} \\
(1+2t)e^{2t} & 2e^{2t}
\end{vmatrix}=-e^{4t}\quad (t\in (0,1))$$
According to a well-known property, the functions are linearly independent on $I$ if the Wronskian does not vanish identically. Clearly, this condition is satisfied, so $y_1(t),y_2(t)$ are linearly independent on $(0,1)$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top