MHB RF's question at Yahoo Answers (linear independence, Wronskian).

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

So I have a question from the topic of differential equations about linear independence/Wronskian...

The problem states: In this problem, determine whether the functions y1 and y2 are linearly dependent on the interval (0, 1).

y1(t) = te^(2t), y2(t) = e^(2t)

Please explain how to do this problem step by step because I have no clue what to do...
Thank you!

Here is a link to the question:

Differential Equations...Linear independence question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello RF,

For $n$ functions $y_1(t), y_2(t) , \ldots , y_n(t)$ which are $n-1$ times differentiable on an interval $I$, the Wronskian is defined by:
$$W(y_1, \ldots, y_n) (t)=
\begin{vmatrix}
y_1(t) & y_2(t) & \cdots & y_n(t) \\
y_1'(t) & y_2'(t) & \cdots & y_n' (t)\\
\vdots & \vdots & \ddots & \vdots \\
y_1^{(n-1)}(t)& y_2^{(n-1)}(t) & \cdots & y_n^{(n-1)}(t)
\end{vmatrix}\quad (t\in I)$$
In our case,
$$W(y_1, y_2) (t)=
\begin{vmatrix}
y_1(t) & y_2(t) \\
y_1'(t) & y_2'(t)
\end{vmatrix}=\begin{vmatrix}
te^{2t} & e^{2t} \\
(1+2t)e^{2t} & 2e^{2t}
\end{vmatrix}=-e^{4t}\quad (t\in (0,1))$$
According to a well-known property, the functions are linearly independent on $I$ if the Wronskian does not vanish identically. Clearly, this condition is satisfied, so $y_1(t),y_2(t)$ are linearly independent on $(0,1)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top