MHB Riccati's equation and Bessel functions

AI Thread Summary
The discussion focuses on solving the Riccati differential equation dy/dx = x^2 + y^2, which is not straightforward. It can be transformed into a linear second-order ordinary differential equation (ODE) using the substitution y = -u'/u. The resulting ODE, u'' + x^2 u = 0, can be solved using Bessel functions, specifically yielding solutions involving J and Y Bessel functions. The participants seek further clarification on the steps to derive the solution for y from u. The conversation emphasizes the complexity of the problem and the connection to Bessel functions.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

How would you go about solving the differential equation dy/dx = x^2 + y^2?

In this case, I have not posted a link there.
 
Mathematics news on Phys.org
Re: Riccati's equation an Bessel functions

This is the answer I have posted there:

You should specify the exact meaning of 'solving' here. Although we have a
Riccati's equation it is not a trivial problem to find the general solution. It can
be expressed in terms of the $J_n$ Bessel functions of the first kind. Have a
look here.

Does anyone know an alternative?
 
Re: Riccati's equation an Bessel functions

The non linear first order Riccati ODE...

$$ y^{\ '} = x^{2} + y^{2}\ (1)$$

... can be transformed into a linear second order ODE with the substitution...

$$y = - \frac{u^{\ '}}{u} \implies y^{\ '} = - \frac{u^{\ ''}}{u} + (\frac{u^{\ '}}{u})^{2}\ (2)$$

... so that we have to engage the ODE...

$$u^{\ ''} + x^{2}\ u =0\ (3)$$

At first the (3) may seem ‘simple’ but of course it isn’t... an attempt will be made in next post...

Kind regards

$\chi$ $\sigma$
 
Re: Riccati's equation an Bessel functions

The solution of the ODE...

$$u^{\ ''} + x^{2}\ u = 0\ (1)$$

can be found in Polyanin A.D. & Zaitzev V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edition...$$ u(x) = \sqrt{x}\ \{c_{1}\ J_{\frac{1}{4}} (\frac{x^{2}}{2}) + c_{2}\ Y_{\frac{1}{4}} (\frac{x^{2}}{2})\ \}\ (2)$$... where $J_{\frac{1}{4}} (*)$ and $Y_{\frac{1}{4}} (*)$ are Bessel function of the first and second type, $c_{1}$ and $c_{2}$ arbitrary constants. Now computing $y= - \frac{u^{\ '}}{u}$ leads us to the solution of the Riccati's equation...Kind regards $\chi$ $\sigma$

 
Where is the solution to -u'/u? I need to see the detail steps to arrive at the solution.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top