Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire.
We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges.
By using the Lorenz gauge condition:
$$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$
we find the following retarded solutions to the Maxwell equations
If we assume that...
Maxwell’s equations imply the following wave equation for the electric field
$$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2}
= \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$
I wonder if eqn.##(1)## can be split into the following transverse part
$$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2}
= \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$
and longitudinal part...
Is it true that in any mechanical set-up, it is possible to predict the nature of Normal Reaction ( magnitude, direction, etc. ) without solving through the dynamical equations of motion and constraints for the set-up as Normal Reaction is completely unknown? I mean is it true that we can explain NR intuitively beforehand?