Riding the Train -Vecotrs & components

AI Thread Summary
To determine the speed and direction of a passenger walking eastward at 5.4 mi/hr on a train traveling north at 16.0 mi/hr, the velocities must be added as vectors. The vertical component is 16.0 mi/hr (north) and the horizontal component is 5.4 mi/hr (east). Using Pythagoras' Theorem, the resultant speed can be calculated as the hypotenuse of the triangle formed by these two components. The angle can be found using trigonometric functions to determine the compass heading. The final result will provide both the speed relative to the ground and the direction in degrees.
junesmrithi
Messages
10
Reaction score
0
Riding the Train --Vecotrs & components

A passenger train is cruising directly to the north at 16.0 mi/hr.
what are the speed and (numerical) direction of a passenger with respect to the ground on this train, if he now walks east-ward at 5.4 mi/hr?
---Compass heading in degrees: N=0, E=90, S=180, and W=270

I know i have to add velocities add as vectors.

Work-
i drew a triagle, the y commponent being 16 and the x (hoizontal) component being 5.4 and i ahve to ifnd the resultant speed. aka: the hypothenuse of the triangle.
But i don't know how to do that when i don't have an angle.
Please help
 
Physics news on Phys.org
Hint: Pythagoras' Theorem.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top