Riemann Geometry: Where is the Flaw in My Thinking?

  • Thread starter Thread starter Gear300
  • Start date Start date
  • Tags Tags
    Geometry Riemann
AI Thread Summary
Riemann's geometry asserts that any two lines meet, which raises questions about the behavior of longitudinal lines on a sphere. The discussion clarifies that longitudinal lines, while they may seem parallel, actually intersect at the poles, aligning with Riemann's principles. A participant reflects on a past inquiry regarding the definition of parallel lines, emphasizing the necessity of the parallel postulate in geometry. The conversation highlights the distinction between straight lines and curves, noting that lines of latitude are equidistant curves on a sphere. Overall, the discussion reinforces the complexities of geometric definitions and their implications in Riemannian geometry.
Gear300
Messages
1,209
Reaction score
9
One of the axioms of Riemann's geometry holds that there are no parallel lines and that any two lines meet. Since Riemann's geometry fits for that of a sphere, any two great circles of the sphere should intersect. However, if we were to take 2 longitudinal lines, then it is possible that these lines never meet. Where is the flaw in my thinking?
 
Mathematics news on Phys.org
Never mind...I overlooked how the longitudinal lines are not by definition "straight" lines.
 
Specifically, they aren't great circles.
 
You mean latitude?
 
Office_Shredder said:
You mean latitude?

Good point. "Longitudinal lines" isn't clear but since he referred to them never meeting, I assumed that was what he meant. "Lines of constant longitude", of course, meet at the north and south poles.
 
By the way, back many many years ago, when I was in high school, I asked my geometry teacher, "why not just define 'parallel lines'" as being lines a constant distance apart? Then it would be obvious that they don't meet and there is only one 'parallel' to a given line through a given point". Being a high school teacher he pretty much just brushed off the question. Now I know that you need the parallel postulate to prove that the set of points at constant distance equidistant from a given line is a "line". The set of lines of lattitude are examples of "equidistant curves" on the spere.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top