Riemannian Penrose Inequality: Proof Restriction to n=3?

Sasha_Tw
Messages
4
Reaction score
1
I am reading the proof of the Riemannian Penrose Inequality (http://en.wikipedia.org/wiki/Riemannian_Penrose_inequality) by Huisken and Ilmamen in "The Inverse Mean Curvature Flow and the Riemannian Penrose Inequality" and I was wondering why they restrict their proof to the dimension ##n=3##.

I thought it might be because of the definition of the Geroch-Hawking mass, or the monotonicity of such a mass, and I was told that it works only in dimension ##n=3## because the Geroch-Hawking mass monotonicity formula relies on the Gauss-Bonnet Theorem. But the latter can be generalized to higher dimensions (for an even dimension), right (wikipedia: Generalized Gauss-Bonnet Theorem)?

Then which argument restricts their proof to ##n=3##?
 
  • Like
Likes bcrowell
Physics news on Phys.org
It seems unlikely to make sense for n=2, since the motivation had to do with black holes, which don't exist in 2+1 dimensions.

It may be that it holds for n>3, but with a trivial change in the geometrical factor of ##16\pi##. Have you tried working out the case of the 4+1-dimensional Schwarzschild spacetime?
 
bcrowell said:
It seems unlikely to make sense for n=2, since the motivation had to do with black holes, which don't exist in 2+1 dimensions.

It may be that it holds for n>3, but with a trivial change in the geometrical factor of ##16\pi##. Have you tried working out the case of the 4+1-dimensional Schwarzschild spacetime?
Thank you for your answer! The proof was generalized to higher dimensions, up to ##n=8## by Bray. But my question is about the Huisken and Ilmanen proof. I know there proof was restricted to dimension ##n=3## due to an argument linked to the Geroch monotonicity. I think it is linked to the fact that the Euler characteristic has to be less or equal than 2. Is that something that is valid only in dimension 3 ? Perhaps coming from the Hawking topology Theorem ? I am still looking into this !
 
bcrowell said:
It seems unlikely to make sense for n=2, since the motivation had to do with black holes, which don't exist in 2+1 dimensions.

It may be that it holds for n>3, but with a trivial change in the geometrical factor of ##16\pi##. Have you tried working out the case of the 4+1-dimensional Schwarzschild spacetime?

There's a black hole solution in 3 dimensions (it does require a negative cosmological constant) http://arxiv.org/abs/hep-th/9204099
 
jkl71 said:
There's a black hole solution in 3 dimensions (it does require a negative cosmological constant) http://arxiv.org/abs/hep-th/9204099

But that wouldn't be asymptotically flat, would it?
 
bcrowell said:
But that wouldn't be asymptotically flat, would it?

No, but I was only addressing the existence of 3-D black holes, not the inequality
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top