A Rigorous transition from discrete to continuous basis

Alex Cros
Messages
28
Reaction score
1
Hi all,

I'm trying to find a mathematical way of showing that given a complete set $$\left |a_i\right \rangle_{i=1}^{i=dim(H)}∈H$$ together with the usual property of $$\left |\psi\right \rangle = ∑_i \left \langle a_i\right|\left |\psi\right \rangle\left |a_i\right \rangle ∀ \left |\psi\right \rangle∈H$$. Now, by letting the set $$\left | a_i \right \rangle_{i=1}^{i=dim(H)} → \left |a_i\right \rangle_{i=1}^{i=∞}$$ and $$\left |a_{i+1}\right \rangle = \left |a_i\right \rangle+\left |δ\right \rangle$$ as $$ δ→0$$ (in the sense of $$\left |a_{i+1}\right \rangle∈Neighborhood(\left |a_i\right \rangle)$$) we should obtain the familiar expression $$\left |\psi\right \rangle = ∫ da \left \langle a\right|\left |\psi\right \rangle\left |a\right \rangle ∀ \left |\psi\right \rangle∈H$$.
How could this be linked in a rigorous way without the usual "for the continuous case replace sum by integral".
Thanks in advance!

PD: Sorry for the latex form, writing in physics forums can be daunting without any packages...
 
Physics news on Phys.org
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
 
  • Like
Likes Alex Cros
bhobba said:
What you need to study is called Rigged Hilbert Spaces - which is graduate level math. It has been discussed here a few times eg:
https://www.physicsforums.com/threads/rigged-hilbert-spaces-in-quantum-mechanics.917768/

The above gives a non-rigorous presentation of what you want as well as a link to a very rigorous PhD thesis on it - not to be touched until you are advanced in the area of math known as functional analysis.

First though you need to understand distribution theory - for that I recommend:
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20

PLEASE PLEASE - I do not know how strongly I can recommend it - get a copy and study it. It will help you in many areas of physics and applied math in general. It makes Fourier transforms a snap, for instance, otherwise you become bogged down in issues of convergence - the Distribution Theory approach bypasses it entirely.

Once you have done that go through the following:
https://www.amazon.com/dp/0821846302/?tag=pfamazon01-20

That will explain it all in terms that is mathematically exact.

Then, do some functional analysis. I suggest the following:
http://matrixeditions.com/FunctionalAnalysisVol1.html

Unfortunately these days only available as an ebook - but still my favorite.

Sorry this question has no easy answer. You are to be congratulated for attempting it. The solution defeated the great Von-Neumann and Hilbert - it took the combined efforts of other great 20th century mathematicaians to crack it - namely - Gelfland, Grothendieck, and Schwartz (probably others as well - it was a toughy) to crack it.

Thanks
Bill
Thank you so much man, that really helps and now my summer is going to be way more interesting!
 
  • Like
Likes bhobba
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top