Ring Homomorphism - showing Multiplicativity

  • Thread starter Thread starter RVP91
  • Start date Start date
  • Tags Tags
    Ring
RVP91
Messages
50
Reaction score
0
Hi,

I have the following map Q: A --> Z/2Z (where Z denotes the symbol for integers) defined by
Q(a + bi) = (a + b) + 2Z

where A = Z = {a + bi | a,b in Z} and i = √-1.


I need to show it is a ring homomorphism.

I have shown it is addivitivity by showing Q(a + b) = Q(a) + Q(b) by doing the following,
Q((a+bi)+(c+di)) = Q((a+c)+(b+d)i) = a+c+b+d+2Z = (a+b+2Z)+(c+d+2Z) = Q(a+bi) + Q(c+di)

Now for multiplicativity i know I have to show Q(ab) = Q(a)Q(b) but my working out seems to break down when i try to show LHS = RHS or RHS = LHS.

This is how I approached it thus far, LHS = RHS
Q((a+bi)(c+di)) = Q((ac-bd)+(ad+bc)i) = ac-bd+ad+bc+2Z and then I'm not sure where to go as nowhere seems to take me to what I need to show.


Any help would be most appreciated, thanks in advance
 
Mathematics news on Phys.org
Hi,

I have the following map Q: A --> Z/2Z (where Z denotes the symbol for integers) defined by
Q(a + bi) = (a + b) + 2Z

where A = Z = {a + bi | a,b in Z} and i = √-1.


I need to show it is a ring homomorphism.

I have shown it is addivitivity by showing Q(a + b) = Q(a) + Q(b) by doing the following,
Q((a+bi)+(c+di)) = Q((a+c)+(b+d)i) = a+c+b+d+2Z = (a+b+2Z)+(c+d+2Z) = Q(a+bi) + Q(c+di)

Now for multiplicativity i know I have to show Q(ab) = Q(a)Q(b) but my working out seems to break down when i try to show LHS = RHS or RHS = LHS.

This is how I approached it thus far, LHS = RHS
Q((a+bi)(c+di)) = Q((ac-bd)+(ad+bc)i) = ac-bd+ad+bc+2Z and then I'm not sure where to go as nowhere seems to take me to what I need to show.


Any help would be most appreciated, thanks in advance[/QUOTE]


Why do you think it'd be a good idea to post this question in General Math instead of Linear & Abstract Algebra?

Anyway, as you wrote:

Q\left((a+bi)(c+di)\right)=ac-bd+ad+bc+2Z , whereas

Q(a+bi)Q(c+di)=\left((a+b)+2Z\right)\left((c+d)+2Z\right)=ac+ad+bc+bd+2Z.

In order to show both lines above are the same, we must show that

ac-bd+ad+bc-(ac+ad+bc+bd)=0\pmod 2\Longleftrightarrow -2bd=0\pmod 2 , which is trivially true and we're done.

DonAntonio
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top