Rolling of non-deforming sphere on a non-deforming rough surface?

Click For Summary

Discussion Overview

The discussion revolves around the behavior of a non-deforming sphere rolling on a non-deforming rough surface, specifically examining the concepts of rolling friction and rolling resistance. Participants explore the conditions under which static friction acts on the sphere and whether it can roll indefinitely without external forces acting on it.

Discussion Character

  • Exploratory
  • Debate/contested
  • Conceptual clarification

Main Points Raised

  • One participant defines rolling friction as the static friction that acts when the translational velocity (v) does not equal the product of the radius (R) and angular velocity (w), suggesting it influences the motion until v equals Rw.
  • Another participant questions whether static friction would still apply if the sphere is rolling with v equal to Rw, arguing that friction only appears as a reaction to an external force.
  • A different viewpoint suggests that friction can act even in the absence of an external force, using the example of a sliding cube that experiences friction opposing its motion, leading to a stop.
  • Some participants emphasize the hypothetical nature of the scenario, noting that the presence of friction depends on the assumptions made about the system.
  • There is a discussion about the nature of static friction at the contact point of the sphere and how it relates to Newton's laws, with one participant asserting that forces always come in pairs.

Areas of Agreement / Disagreement

Participants express differing views on the conditions under which static friction acts and whether it can exist without an external force. The discussion remains unresolved, with multiple competing perspectives presented.

Contextual Notes

The discussion includes assumptions about the idealized nature of the sphere and surface, as well as the absence of external forces such as air resistance or rolling resistance, which may affect the conclusions drawn.

tbn032
Messages
34
Reaction score
7
According to my current understanding
rolling friction
rolling friction is the static friction (parallel to the surface on which the object is moving) applied by the frictional surface (rough surface) on the contact point or contact area of the object whose v≠Rw(v is translational velocity and R is radius of sphere and w in angular velocity).It increases the angular acceleration and decreases the translational velocity or vice versa till the condition v=Rw is reached.

Rolling resistance
Rolling resistance is the counter torque provided to the rolling object due to the deformation of the object or the surface, causing the normal forces to shift from the centre of mass and thus providing counter torque.

Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
 
Physics news on Phys.org
tbn032 said:
Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
Just like it happens between two flat surfaces, friction force only appears as a reaction to another force.
If nothing is pushing or pulling your sphere in the rolling direction, there is no acceleration or related forces.
 
Lnewqban said:
Just like it happens between two flat surfaces, friction force only appears as a reaction to another force.
I think friction could appear in the absence of a force. Suppose a cube is sliding on a frictional horizontal surface with momentum p(no external force is being applied on the cube). Friction would still be applied on the cube(opposing the motion of the cube), and thus the cube will stop sliding.
 
tbn032 said:
According to my current understanding
rolling friction
rolling friction is the static friction (parallel to the surface on which the object is moving) applied by the frictional surface (rough surface) on the contact point or contact area of the object whose v≠Rw(v is translational velocity and R is radius of sphere and w in angular velocity).It increases the angular acceleration and decreases the translational velocity or vice versa till the condition v=Rw is reached.

Rolling resistance
Rolling resistance is the counter torque provided to the rolling object due to the deformation of the object or the surface, causing the normal forces to shift from the centre of mass and thus providing counter torque.

Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
I thought you asked this question already. Friction applies in real scenarios. If you invent a hypothetical scenario, then there's no way to test whether there is friction or not.

Whether there is friction is part of the hypothetical assumptions.
 
tbn032 said:
I think friction could appear in the absence of a force. Suppose a cube is sliding on a frictional horizontal surface with momentum p(no external force is being applied on the cube). Friction would still be applied on the cube(opposing the motion of the cube), and thus the cube will stop sliding.
I was referring to static friction at each instant the contact point of the sphere is in static contact with the perfecly flat surface.
But I believe that my previous statement is also valid for the case of the sliding cube, as Newton’s laws still apply: a change in momentum during certain time always generates a force that resists that change, and forces always come in pairs.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
4K
  • · Replies 22 ·
Replies
22
Views
5K