B Rolling of non-deforming sphere on a non-deforming rough surface?

AI Thread Summary
The discussion centers on the behavior of a non-deforming sphere rolling on a non-deforming rough surface when given specific translational and angular velocities. It explores the concepts of rolling friction and rolling resistance, emphasizing that rolling friction acts as a static friction force when the sphere's translational velocity equals the product of its radius and angular velocity (v = Rw). Participants debate whether static friction would still apply in the absence of external forces, with one viewpoint suggesting that friction can exist even without an applied force, as seen in the example of a sliding cube. The conversation highlights the complexities of friction in theoretical scenarios versus real-world applications. Ultimately, the question remains whether the sphere would continue rolling indefinitely under these ideal conditions.
tbn032
Messages
34
Reaction score
7
According to my current understanding
rolling friction
rolling friction is the static friction (parallel to the surface on which the object is moving) applied by the frictional surface (rough surface) on the contact point or contact area of the object whose v≠Rw(v is translational velocity and R is radius of sphere and w in angular velocity).It increases the angular acceleration and decreases the translational velocity or vice versa till the condition v=Rw is reached.

Rolling resistance
Rolling resistance is the counter torque provided to the rolling object due to the deformation of the object or the surface, causing the normal forces to shift from the centre of mass and thus providing counter torque.

Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
 
Physics news on Phys.org
tbn032 said:
Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
Just like it happens between two flat surfaces, friction force only appears as a reaction to another force.
If nothing is pushing or pulling your sphere in the rolling direction, there is no acceleration or related forces.
 
Lnewqban said:
Just like it happens between two flat surfaces, friction force only appears as a reaction to another force.
I think friction could appear in the absence of a force. Suppose a cube is sliding on a frictional horizontal surface with momentum p(no external force is being applied on the cube). Friction would still be applied on the cube(opposing the motion of the cube), and thus the cube will stop sliding.
 
tbn032 said:
According to my current understanding
rolling friction
rolling friction is the static friction (parallel to the surface on which the object is moving) applied by the frictional surface (rough surface) on the contact point or contact area of the object whose v≠Rw(v is translational velocity and R is radius of sphere and w in angular velocity).It increases the angular acceleration and decreases the translational velocity or vice versa till the condition v=Rw is reached.

Rolling resistance
Rolling resistance is the counter torque provided to the rolling object due to the deformation of the object or the surface, causing the normal forces to shift from the centre of mass and thus providing counter torque.

Now my question is.
Suppose a non deforming sphere of radius R initially is kept on a non deforming rough horizontal surface(frictional surface). Then it is provided with translation velocity v and angular velocity w such that v=Rw.will the static frictional force(rolling friction) be applied on the sphere?will the sphere continue to roll forever?(there is no air resistance and there is no rolling resistance due to non deforming sphere and non deforming horizontal surface)(gravitational forces acts on the sphere perpendicular to the horizontal surface)
I thought you asked this question already. Friction applies in real scenarios. If you invent a hypothetical scenario, then there's no way to test whether there is friction or not.

Whether there is friction is part of the hypothetical assumptions.
 
tbn032 said:
I think friction could appear in the absence of a force. Suppose a cube is sliding on a frictional horizontal surface with momentum p(no external force is being applied on the cube). Friction would still be applied on the cube(opposing the motion of the cube), and thus the cube will stop sliding.
I was referring to static friction at each instant the contact point of the sphere is in static contact with the perfecly flat surface.
But I believe that my previous statement is also valid for the case of the sliding cube, as Newton’s laws still apply: a change in momentum during certain time always generates a force that resists that change, and forces always come in pairs.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Replies
3
Views
2K
Replies
7
Views
4K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
11
Views
2K
Replies
14
Views
2K
Back
Top