MHB Roots of p ( z ) in IR [ z ] (Lava's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Ir Roots
AI Thread Summary
The discussion focuses on solving the polynomial equation z^3 + az^2 + bz + c = 0, where a, b, and c are real numbers and the equation has a purely imaginary root. It establishes that if βi is a root, then -βi must also be a root due to the polynomial's real coefficients. The presence of a real root α leads to the conclusion that the roots can be expressed as z1 = α, z2 = βi, and z3 = -βi. Using Cardano-Vieta relations, the relationships between the coefficients and the roots are derived, resulting in the conditions α = -a, β^2 = b, and αβ^2 = -c. Ultimately, it concludes that the roots of p(z) can be represented as z1 = -a, z2 = +√|b|i, and z3 = -√|b|i.
Mathematics news on Phys.org
Hello Lava,

Denote $z_1,z_2,z_3$ the roots of $p(z)=z^3+az^2+bz+c\in\mathbb{R}[z]$. If $\beta i$ is a root of $p(z)$, then $-\beta i$ is also a root of $p(z)$ ($p(z)$ is a real polynomial). By hypothesis $\beta\ne 0$ and $p(z)$ has a real root $\alpha$ (odd degree). If $z_1=\alpha$, $z_2=\beta i$, $z_3=-\beta i$, and using the Cardano-Vieta relations: $$\left \{ \begin{matrix} z_1+z_2+z_3=-a\\z_1z_2+z_1z_3+z_2z_3=b\\z_1z_2z_3=-c\end{matrix}\right.\Leftrightarrow \left \{ \begin{matrix} \alpha=-a\\\beta^2=b\\\alpha\beta^2=-c\end{matrix}\right.$$ As $\beta^2=b=c/a$, necessarily $c=ba.$ So the roots of $p(z)$ are $z_1=-a$, $z_2=+\sqrt{|b|}i$, $z_3=-\sqrt{|b|}i$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top