Rotation of the plane of polarization of light by glucose

Click For Summary

Discussion Overview

The discussion centers on the phenomenon of the rotation of the plane of polarization of light by a glucose solution. Participants explore the underlying mechanisms of this effect, particularly focusing on the relationship between the molecular structure of glucose and the resulting optical activity. The scope includes theoretical explanations and experimental observations related to polarization and birefringence.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Some participants explain that glucose solutions exhibit circular birefringence, where left-handed and right-handed circularly polarized light propagate at different speeds due to the chiral nature of glucose molecules.
  • It is noted that chirality refers to the property of molecules that cannot be superimposed on their mirror images, which is relevant to the optical activity of glucose.
  • One participant describes the mathematical representation of the electric field of a plane electromagnetic wave and how it relates to the polarization changes when passing through the glucose solution.
  • There is a mention of the relationship between the frequency of the light and the angle of rotation of the polarization plane, suggesting that the angle depends on the frequency of the light passing through the glucose.
  • A reference to Condon's paper is made, indicating that the asymmetry of optically active molecules is crucial for understanding the phenomenon.

Areas of Agreement / Disagreement

Participants generally agree on the basic principles of birefringence and chirality as they relate to glucose, but the discussion remains open regarding the detailed mechanisms and implications of these concepts, with no consensus reached on all aspects of the phenomenon.

Contextual Notes

Some limitations include the complexity of the mathematical derivations presented and the dependence on specific definitions of chirality and birefringence, which may not be universally agreed upon.

greg_rack
Gold Member
Messages
361
Reaction score
79
Hi guys,

Online I found this really cool experiment that uses a glucose solution(e.g. in a beaker) to rotate the plane of polarization of a polarized light beam passing through it, of an angle ##\theta## which depends on the frequency of the EM wave.
Then, for example, watching white light emitted from a monitor(polarized white light) through the beaker containing glucose, with a polarizing filter, allows you to watch the white beam split into a certain frequency of the visible spectrum depending on how you tilt the filter.

Hence, I wanted to ask you why do glucose molecules cause this rotation of EM waves, depending on frequency? I know this has something to do with the shape of the molecules, but online I couldn't find much and I would really appreciate a detailed explanation of the phenomenon :)

Greg
 
Science news on Phys.org
 
  • Like
Likes   Reactions: greg_rack and Motore
Nice question! There's a property of an optically active medium called birefringence, which just means that the refractive index of the medium depends on how the light is polarised.

A glucose solution exhibits circular birefringence, where left-handed and right-handed circularly polarised light propagate with different speeds. This sort of birefringence occurs when the sample contains net non-zero amount of molecules of a certain chirality [(D) or (L)]; chirality is just a fancy way of saying that if you reflect the molecule in a mirror then you can't superimpose it on the original molecule. For example glucose is chiral because it contains a number of carbon atoms each of which are connected to four distinct groups.

For a plane EM wave traveling along the ##z## axis you can generally write the electric field as ##\mathbf{E}(z,t) = \mathcal{Re} \left[(a \hat{\boldsymbol{x}} + b \hat{\boldsymbol{y}})e^{i(kz - \omega t)} \right]## where ##a## and ##b## are the complex amplitudes (##a = a_0 e^{i \phi_x}##, ##b = b_0 e^{i \phi_y}##) in the ##x## and ##y## directions.

First you have a linearly polarised wave from the polariser (that is, ##\phi_x = \phi_y##), for which without loss of generality you can just take ##\mathbf{E}(z,t) = \mathcal{Re} [(A \hat{\boldsymbol{x}}) e^{i(kz - \omega t)}]## for some real number ##A##. You can write this equivalently as the sum of two oppositely circularly polarised (##\phi_y = \phi_x \pm \frac{\pi}{2}##) waves,$$\mathbf{E}(z,t) = \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} ) e^{i(k_1 z - \omega t)} \right] + \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} ) e^{i(k_2 z - \omega t)} \right]$$Outside of the circularly birefringent material you'll have ##k_1 = k_2 = k = n \omega / c##, but once the light passes into the material ##n_1 \omega / c = k_1 \neq k_2 = n_2 \omega / c##, if the two refractive indices are ##n_1## and ##n_2##. In other words, the two waves begin to accumulate phase with increasing ##z## at a relative rate of ##\frac{\omega}{c} (n_2 - n_1) := \frac{\omega \Delta n}{c}##. If you let ##\xi## be the distance the light has traveled in the medium (i.e. let ##z = z_0 + \xi##, where ##z_0## is the coordinate of the start of the material), then the change in relative phase over this distance will be ##\delta(\xi) := \frac{\omega \xi \Delta n}{c}##. So the equation of the electric field on the other side of the material is the sum of two contributions with a relative phase ##\delta(L)## (abbreviated ##\delta##),
$$
\begin{align*}
\mathbf{E}(z,t) &= \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} ) e^{i(kz - \omega t)} \right] + \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} ) e^{i(kz - \omega t)} e^{i\delta} \right] \\ \\

&= \frac{1}{2} \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left( (\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} )e^{-\frac{i \delta}{2}} + (\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} )e^{\frac{i \delta}{2}} \right) \right] \\ \\

&= \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left(\frac{e^{\frac{i \delta}{2}} + e^{-\frac{i \delta}{2}}}{2} \hat{\boldsymbol{x}} - \frac{e^{\frac{i \delta}{2}} - e^{-\frac{i \delta}{2}}}{2} i \hat{\boldsymbol{y}} \right)\right] \\ \\

&= \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left( \cos{\frac{\delta}{2} } \hat{\boldsymbol{x}} + \sin{\frac{\delta}{2} } \hat{\boldsymbol{y}} \right)\right] = \mathcal{Re}[(A \hat{\boldsymbol{n}})e^{i(kz - \omega t+ \frac{\delta}{2})}]
\end{align*}
$$where ##\hat{\boldsymbol{n}} = \cos{\frac{\delta}{2}} \hat{\boldsymbol{x}} + \sin{\frac{\delta}{2}} \hat{\boldsymbol{y}}## is the unit vector obtained by rotating ##\hat{\boldsymbol{x}}## anti-clockwise by ##\delta / 2##. In other words, the plane of polarisation has tilted by an angle ##\delta / 2##!

Because ##\delta \propto \omega##, the angle by which the plane of polarisation tilts depends on the frequency of the light passing through the glucose. If you observe with white light incident on crossed polars, then those particular frequencies which have their polarisation angle tilted by a multiple of ##\pi## will pass through the glucose un-rotated, so are not transmitted through the analyser (which is at ##\frac{\pi}{2}## to the polariser). The colour seen is then the so-called "complementary colour", which you can determine by looking at the Michel-Levy chart.
 
Last edited by a moderator:
  • Like
  • Love
Likes   Reactions: greg_rack and vanhees71
greg_rack said:
Hi guys,

Online I found this really cool experiment that uses a glucose solution(e.g. in a beaker) to rotate the plane of polarization of a polarized light beam passing through it, of an angle ##\theta## which depends on the frequency of the EM wave.
Then, for example, watching white light emitted from a monitor(polarized white light) through the beaker containing glucose, with a polarizing filter, allows you to watch the white beam split into a certain frequency of the visible spectrum depending on how you tilt the filter.

Hence, I wanted to ask you why do glucose molecules cause this rotation of EM waves, depending on frequency? I know this has something to do with the shape of the molecules, but online I couldn't find much and I would really appreciate a detailed explanation of the phenomenon :)

Greg

Condon's paper is a classic:

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.9.432

In essence, the optically active molecule needs to be asymmetric.
 
  • Like
  • Informative
Likes   Reactions: greg_rack, vanhees71 and etotheipi
etotheipi said:
Nice question! There's a property of an optically active medium called birefringence, which just means that the refractive index of the medium depends on how the light is polarised.

A glucose solution exhibits circular birefringence, where left-handed and right-handed circularly polarised light propagate with different speeds. This sort of birefringence occurs when the sample contains net non-zero amount of molecules of a certain chirality [(D) or (L)]; chirality is just a fancy way of saying that if you reflect the molecule in a mirror then you can't superimpose it on the original molecule. For example glucose is chiral because it contains a number of carbon atoms each of which are connected to four distinct groups.

For a plane EM wave traveling along the ##z## axis you can generally write the electric field as ##\mathbf{E}(z,t) = \mathcal{Re} \left[(a \hat{\boldsymbol{x}} + b \hat{\boldsymbol{y}})e^{i(kz - \omega t)} \right]## where ##a## and ##b## are the complex amplitudes (##a = a_0 e^{i \phi_x}##, ##b = b_0 e^{i \phi_y}##) in the ##x## and ##y## directions.

First you have a linearly polarised wave from the polariser (that is, ##\phi_x = \phi_y##), for which without loss of generality you can just take ##\mathbf{E}(z,t) = \mathcal{Re} [(A \hat{\boldsymbol{x}}) e^{i(kz - \omega t)}]## for some real number ##A##. You can write this equivalently as the sum of two oppositely circularly polarised (##\phi_y = \phi_x \pm \frac{\pi}{2}##) waves,$$\mathbf{E}(z,t) = \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} ) e^{i(k_1 z - \omega t)} \right] + \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} ) e^{i(k_2 z - \omega t)} \right]$$Outside of the circularly birefringent material you'll have ##k_1 = k_2 = k = n \omega / c##, but once the light passes into the material ##n_1 \omega / c = k_1 \neq k_2 = n_2 \omega / c##, if the two refractive indices are ##n_1## and ##n_2##. In other words, the two waves begin to accumulate phase with increasing ##z## at a relative rate of ##\frac{\omega}{c} (n_2 - n_1) := \frac{\omega \Delta n}{c}##. If you let ##\xi## be the distance the light has traveled in the medium (i.e. let ##z = z_0 + \xi##, where ##z_0## is the coordinate of the start of the material), then the change in relative phase over this distance will be ##\delta(\xi) := \frac{\omega \xi \Delta n}{c}##. So the equation of the electric field on the other side of the material is the sum of two contributions with a relative phase ##\delta(L)## (abbreviated ##\delta##),
$$
\begin{align*}
\mathbf{E}(z,t) &= \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} ) e^{i(kz - \omega t)} \right] + \frac{1}{2} \mathcal{Re} \left[ A(\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} ) e^{i(kz - \omega t)} e^{i\delta} \right] \\ \\

&= \frac{1}{2} \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left( (\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} )e^{-\frac{i \delta}{2}} + (\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} )e^{\frac{i \delta}{2}} \right) \right] \\ \\

&= \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left(\frac{e^{\frac{i \delta}{2}} + e^{-\frac{i \delta}{2}}}{2} \hat{\boldsymbol{x}} - \frac{e^{\frac{i \delta}{2}} - e^{-\frac{i \delta}{2}}}{2} i \hat{\boldsymbol{y}} \right)\right] \\ \\

&= \mathcal{Re} \left[Ae^{i (kz - \omega t + \frac{\delta}{2})} \left( \cos{\frac{\delta}{2} } \hat{\boldsymbol{x}} + \sin{\frac{\delta}{2} } \hat{\boldsymbol{y}} \right)\right] = \mathcal{Re}[(A \hat{\boldsymbol{n}})e^{i(kz - \omega t+ \frac{\delta}{2})}]
\end{align*}
$$where ##\hat{\boldsymbol{n}} = \cos{\frac{\delta}{2}} \hat{\boldsymbol{x}} + \sin{\frac{\delta}{2}} \hat{\boldsymbol{y}}## is the unit vector obtained by rotating ##\hat{\boldsymbol{x}}## anti-clockwise by ##\delta / 2##. In other words, the plane of polarisation has tilted by an angle ##\delta / 2##!

Because ##\delta \propto \omega##, the angle by which the plane of polarisation tilts depends on the frequency of the light passing through the glucose. If you observe with white light incident on crossed polars, then those particular frequencies which have their polarisation angle tilted by a multiple of ##\pi## will pass through the glucose un-rotated, so are not transmitted through the analyser (which is at ##\frac{\pi}{2}## to the polariser). The colour seen is then the so-called "complementary colour", which you can determine by looking at the Michel-Levy chart.
Brilliant! Thanks man, appreciate it :)
 
  • Love
Likes   Reactions: etotheipi

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K