Michael C
- 134
- 1
aaaa202 said:hmm it's just that when you see the ball for the point of contact between string and pole it makes a uniform circular motion. So can't you say that the angular momentum is conserved in this frame for the ball? And why does that not qualify to the ball's angular momentum being conserved like if the rotation was around the center of mass? :)
The point of contact is changing all the time: it's turning in a circle around the pole, so (as Philip pointed out) it's constantly accelerating. If we fix one point on the surface of the pole and measure the angular momentum around this point, we'll see that the momentum of the ball must be changing, since there is only one instant when the ball exerts no torque in this frame: the instant when the centre of rotation is at the point we have fixed. For the rest of the time, the centre of rotation is not at the point we have fixed, so there is torque around this point.