Rudin Theorem 1.21. How does he get The identity ?

  • Thread starter Thread starter bhagwad
  • Start date Start date
  • Tags Tags
    Identity Theorem
bhagwad
Messages
28
Reaction score
1
Rudin Theorem 1.21. How does he get "The identity"?

In Theorem 1.21, Rudin says:

The identity b^n-a^n=(b-a)(b^{n-1}+b^{n-2}a+...+a^{n-1})yields etc etc.

What is this "identity", and do we need to prove it first? If not, what assumption is Rudin making?
 
Physics news on Phys.org
Just multiply it out
 
lavinia said:
Just multiply it out

So if we have b^3-a^3, we get
(b.b.b)-(a.a.a)

I'm probably missing something obvious, but I'm not sure what to do from here on.
 
##(b-a)(b^{n-1}+b^{n-2}a+...+a^{n-1}) = b(b^{n-1}+b^{n-2}a+...+a^{n-1})-a(b^{n-1}+b^{n-2}a+...+a^{n-1}) = (b^{n}+b^{n-1}a+...+ba^{n-1}) - (b^{n-1}a+b^{n-2}a^2+...+a^{n}) = b^n-a^n##
 
  • Like
Likes 1 person
Axiomer said:
##(b-a)(b^{n-1}+b^{n-2}a+...+a^{n-1}) = b(b^{n-1}+b^{n-2}a+...+a^{n-1})-a(b^{n-1}+b^{n-2}a+...+a^{n-1}) = (b^{n}+b^{n-1}a+...+ba^{n-1}) - (b^{n-1}a+b^{n-2}a^2+...+a^{n}) = b^n-a^n##

Thanks that works!

It's curious though. We've proved it in one direction, but I wonder how someone made the formula in the first place.
 
I suppose one might start by noticing that ##(b-a)## factors ##b^n-a^n##, since ##a## is clearly a root of the polynomial ##x^n-a^n##. So ##b^n-a^n=(b-a)p(a,b)## for some polynomial ##p(a,b)##. Then, to determine ##p(a,b)##, one could start doing long division to see the pattern. Alternatively, we can construct ##p(a,b)## by noticing that ##p(a,b)=p(b,a)##, and that ##p(a,b)## must have ##b^{n-1}## as a term.
 
Axiomer said:
I suppose one might start by noticing that ##(b-a)## factors ##b^n-a^n##, since ##a## is clearly a root of the polynomial ##x^n-a^n##. So ##b^n-a^n=(b-a)p(a,b)## for some polynomial ##p(a,b)##. Then, to determine ##p(a,b)##, one could start doing long division to see the pattern. Alternatively, we can construct ##p(a,b)## by noticing that ##p(a,b)=p(b,a)##, and that ##p(a,b)## must have ##b^{n-1}## as a term.

I linked to your reply from my blog post: http://www.bhagwad.com/blog/2013/un...ins-principles-of-mathematical-analysis.html/

Thanks again!
 
Back
Top