Sample standard deviation serially correlated normal data

rhz
Messages
11
Reaction score
0
Hi,

Can anyone point me to a reference for the statistical properties of the sample standard deviation of a sequence of identically distributed normal random variables subject to some form of serial correlation?

Thanks,

rhz
 
Physics news on Phys.org
( ∑ Xk)2 = ∑∑XkXj
Take expectation and subtract out the mean squared and you will have:

2 + ∑∑(k≠j) cov(k,j)

cov(k,j) is the covariance of XkXj.
 
mathman said:
( ∑ Xk)2 = ∑∑XkXj
Take expectation and subtract out the mean squared and you will have:

2 + ∑∑(k≠j) cov(k,j)

cov(k,j) is the covariance of XkXj.

Hi,

OK, but I'm interested in the statistical properties of the sample standard deviation:

\sqrt{\hat\sigma^2} = \sqrt \left ( \frac{1}{N-1}\sum^{N-1}_{i=0}(x_i-\hat{\mu})^2 \right )
\hat\mu = \frac{1}{N}\sum^{N-1}_{i=0}x_i

Thanks.
 
Fix your latex!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top