Petar Mali
- 283
- 0
\vec{B}=rot\vec{A}
\vec{E}=-\frac{\partial\vec{A}}{\partial t}-grad\varphi
If I define
\varphi=\widetilde{\varphi}-\frac{\partial f}{\partial t}
\vec{A}=\widetilde{\vec{A}}+gradf
where
f=f(x,y,z,t)
I will get
\vec{B}=rot\vec{A}=rot\vec{\widetilde{\vec{A}}}
\vec{E}=-\frac{\partial\vec{A}}{\partial t}-grad\varphi=-\frac{\partial\widetilde{\vec{A}}}{\partial t}-grad\widetilde{\varphi}
But if I say
\varphi=\widetilde{\varphi}+\frac{\partial f}{\partial t}
\vec{A}=\widetilde{\vec{A}}+gradf
I wouldn't get that result. How I know how to take minus sign in this relations!
\vec{E}=-\frac{\partial\vec{A}}{\partial t}-grad\varphi
If I define
\varphi=\widetilde{\varphi}-\frac{\partial f}{\partial t}
\vec{A}=\widetilde{\vec{A}}+gradf
where
f=f(x,y,z,t)
I will get
\vec{B}=rot\vec{A}=rot\vec{\widetilde{\vec{A}}}
\vec{E}=-\frac{\partial\vec{A}}{\partial t}-grad\varphi=-\frac{\partial\widetilde{\vec{A}}}{\partial t}-grad\widetilde{\varphi}
But if I say
\varphi=\widetilde{\varphi}+\frac{\partial f}{\partial t}
\vec{A}=\widetilde{\vec{A}}+gradf
I wouldn't get that result. How I know how to take minus sign in this relations!