Scalar multiplication axiom, quick question

ryan8642
Messages
24
Reaction score
0
u and v are contained in V

Lets say the scalar multiplication is defined as:

ex.

ku=k^2 u or ku = (0,ku2) u=(u1,u2)

does this mean that this is also the same for different scalar m?

mu=m^2 u or mu = (0,mu2) u=(u1,u2)

and does this mean the same for any vector v

kv=k^2 v or kv = (0,kv2) v=(v1,v2)

Is this correct?

Axioms 7,8,9 contain the 2 different scalars as well as vectors. it really confuses me.

Can someone please put me on the right track :s
 
Physics news on Phys.org
so u guys know and I am not confusing you guys i showed 2 examples there to help show my problem.

Ex 1.

Lets say the scalar multiplication is defined as:

ku = (0,ku2) u=(u1,u2)

does this then mean that this is also the same for different scalar m?

mu = (0,mu2) u=(u1,u2)

and also this for any vector v

kv = (0,kv2) v=(v1,v2)

_____________________
addition u+v=(u1+v1, u2+v2)

ex.. axiom 8 (to help explain my problem)

using what is described above.

(k+m)u = ku + mu
(k+m)(u1,u2)=k(u1,u2) + m(u1,u2)
(0,(k+m)u2)=(0,ku2) + (0,mu2)
(0,(k+m)u2)=(0,ku2+mu2)
(0,(k+m)u2)=(0,(k+m)u2)

LS=RS therefore axiom 8 holds for the set.

now using just ku=(0,ku2)

(k+m)u = ku + mu
(k+m)(u1,u2) = k(u1,u2) + m(u1,u2)
((k+m)u1, (k+m)u2) = (0,ku2) + (mu1,mu2)
((k+m)u1, (k+m)u2) = (0+mu1, ku2+mu2)
(ku1+mu1,ku2+mu2) = (mu1, ku2 +mu2)

LS ≠ RS so axiom 8 doesn't hold for the set.

hopefully that helps explain my problem...

which way is correct?? please help!
 
ryan8642 said:
Axioms 7,8,9 contain the 2 different scalars as well as vectors. it really confuses me.

It also confuses anyone who doesn't know what axioms 7,8 and 9 are, which I assume is almost everybody. Why don't you give a complete statement of the exercise that your are trying to work?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top