Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Schwarzschild, Singularity, Density

  1. May 22, 2015 #1
    Dear PF Forum,

    I have a question about the size of "singularity"
    This question has already been asked here, Question about Schwarzschild radius
    But what I want to know is this density thing that I'd like a confirmation.
    Actually it's 2.9511896078372906 KM according to his
    http://hyperphysics.phy-astr.gsu.edu/hbase/astro/blkhol.html


    1. But what if it were squeezed to 3.1 KM, the "sun" radius is still 3.1KM, right. It's density will be 18400 trillion of water.
    Can we, theortically, "measure" the sun with a ruler if it's radius is 3.1KM?
    Once it goes below 2.951 KM, it's radius will be 0 KM, singularity. Is that right?
    2. Still according to Schwarzschild calculator, for an object (star? nebulae?) 1 G solar mass it's Scharwzshild radius is 2.95E9 KM. It's density is 1.84 percent that of water.
    Did I make a mistake in my calculation?
    If that objects is squeezed to 2.94E9, will it disappear and become a black hole?
    3. Still using that calculator above. According to Wikipedia
    The universe mass is 1E53Kg
    So it's Schwarzshild radius is 1.48E26 metres. Dividing it by seconds/minutes/hours/days/years
    I find this: 15.6 billion light years. And our universe is 13.6 billion years old. So??
    Are we living in a black hole?
    If the question number 1 and 2 are true, about "squeezing object below it's Schwarzshild radius", why aren't we squeezed into a singularity?
    Did I make a mistake in my calculation, again?
    4. Is it possible for a very massive object below it's schwarzshild radius, but doesn't become a black hole? Doesn't become a singularity?

    Thanks for any explanation.
     
  2. jcsd
  3. May 22, 2015 #2

    Dale

    Staff: Mentor

    The radius of the singularity is 0. The radius of the event horizon remains 3 km.
     
  4. May 22, 2015 #3

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Not according to GR, no.
     
  5. May 22, 2015 #4

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The "singularity" does not have a "size" in a sensible way.
    The word is a mathematical way of saying that something is "interesting" or odd about the maths.


    1. depends on the ruler ... you usually want to do some sort of triangulation with maybe a relativistic correction.
    ... once the Sun is squashed below the Schwarzschild radius, there is nothing in the theory to stop it collapsing all the way to nothing. This condition is referred to as "singular". Note: all theoretical point masses have a singularity at their locations.

    2. You have certainly made a mistake.
    Consider - your density figure for the Sun as a black hole is much less than the density of water at STP. About 2-hundredths the density (1.8%).
    Yet, the Sun is currently about 144% or one and a half times the density of water.
    So your calculations are saying that you can compress something and end up with a lower density ... does this make sense?

    3. Continuing to use a bad method will continue to get you nonsensical results. You have certainly made a mistake in your calculation again.
    Note: When you read about size, mass, and age of the Universe you have to be careful - for instance, the "edge" of the visible universe is much farther than it's age multiplied by the speed of light.

    Bottom line: Q1 and Q2 are not both true.

    4. No. That is pretty much what "Schwarzschild radius" means.
    We do not expect that the singularity is a physical object that exists in Nature though.
    The gravitational singularity is just the locus of points where the known laws of physics don't work and nobody knows how to fix it.
    For a Schwarzschild black hole, this is a single point at the center of mass.
     
  6. May 23, 2015 #5
    Thanks everybody for taking efforts to answer me.

    Dear Simon Bridge, I'd like some verification here.

    And if we do the math, sun radius 6963423 x π x [itex]\frac{4}{3}[/itex] divided by it's mass is exactly 144% that of water as you pointed out. But the sun at 3KM is 184 trillion of water.
    What I want know is for an object 1 billion solar mass and it's Schwarzshild radius. Its density is just 1.84% that of water?? Is that right?

    Yes, it's 43gly according to what I read.

    Thanks Simon for your answer.
     
  7. May 23, 2015 #6

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    You have the calculation upside down.
    The density of an object is, by definition, it's mass divided by it's volume.


    Density increases with mass and decreases with volume.
     
    Last edited: May 23, 2015
  8. May 23, 2015 #7
    Thanks Simon Bridge.
    Sorry, I hastily typed. Density is mass/volume. But I calculated an object about 1 billion solar mass, then I find the Schwarzshild radius. But, if I divide it's mass with its volume, I found that it's 1% density of water.
    Okay.., I'l do it again.
    Mass: 1 billion solar mass, 1.989 x 1039
    Radius: 2.951 x 1012m = 2.951 x 1013dm
    Volume: 2.951 x 1013 x 2.951 x 1013 x 2.951 x 1013 x [itex]\frac{4}{3}[/itex] x [itex]\pi[/itex] = 1.0766 x 1041l
    ----------------------------
    So,
    Mass: 1.989 x 1039Kg
    Volume: 1.0766 x 1041l
    Density: 1.85% of water?

    If that so, so this black hole has density less than neutron star?
     
  9. May 23, 2015 #8

    Nugatory

    User Avatar

    Staff: Mentor

    If you look at ##V=(4\pi/3)R^3## and ##R=2GM/c^2## before you start plugging in numbers (this is a generally good habit - the numbers go in last when you're trying to understand the relationships between things) you'll see that as M increases so does R, but V increases as the cube of R. Double M and V will increase by a factor of eight, meaning that the density will decrease by a factor of four. If you feel like doing a bit of algebra, you can even work out the formula for the "density". It will look like ##\rho=K/M^2## where ##K## is a constant whose value depends on your units.
    So it should be clear that you can make the "density" as small as you like just by choosing a sufficiently large M. Yes, if the black hole is large enough it's "density" will be less than that of water, or air, or whatever.

    Whether the result of this calculation is actually the density of anything is a different question. The mass inside the black hole is not spread uniformly throughout its "volume" so you won't find that "density" anywhere... and worse, although the surface area of a sphere around the black hole is ##4\pi{R}^2##, thanks to spacetime curvature the diameter across that sphere is not ##2R## and the volume of the space contained within it is not ##(4\pi/3)/R^3##.
     
  10. May 23, 2015 #9
    Yes, thanks Nugatory. Just by looking at the formula at a glance
    R =2GM/c2
    R =M x 2G/c2
    R =M x some constant ,
    the comparison between mass and volume is exponential to three degree. It's just that I just learned that the mass of a black hole divided its volume from Schwarzshild Radius can be less water density. I'm afraid that I made a mistake in my calculation, that's why I need to verify this in PF forum.
    And triple the mass of the black hole, the density will decrease by a factor of nine...?
     
  11. May 23, 2015 #10

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    For a fixed volume, increasing the mass also increases the density. But I see what you are asking now.
    For a black hole, increasing the mass also increases it's Schwarzschild radius.
    So black holes do not have to be dense.

    $$V=\frac{4\pi}{3}R^3,\; R=\frac{2GM}{c^2}\; \implies V=\frac{4\pi}{3}\frac{8G^3}{c^2}M^3\\
    \implies \rho = M/V = \frac{32}{3\pi G^3 c^2}\frac{1}{M^2}$$ ... so, triple the mass of the black hole and the density (when you average it across the volume implied by the Schwarzschild radius) reduces by a factor of nine - you are correct.

    You can do the calculation a bit differently - work out the size that a blob of water density needs to be so that the escape velocity at it's surface is the speed of light.
    Just keep piling mass on and you will eventually get there even just using classical physics.

    Caveat: take in Nugatory's note about how the mass inside the Schwarzschild radius is not uniform ... the math puts all the mass at a "singularity", which gives it infinite density. So what ppl are talking about would be the critical mean density just before collapse or something like that. In this sense it is actually a bit misleading to think about black hole formation in terms of density. We are not thinking of a supermassive black hole as the sort of object that would float on water.
     
    Last edited: May 23, 2015
  12. May 23, 2015 #11

    PeterDonis

    User Avatar
    2016 Award

    Staff: Mentor

    Not only that, as Nugatory noted, the spatial volume inside the horizon is not ##( 4 \pi / 3 ) R^3##. More precisely, it isn't unless you choose a particular coordinate chart (Painleve coordinates). In other coordinates it's different; in fact, it's possible to choose coordinates in which it's infinite. So the physical meaning of the "density" being calculated for a black hole is tenuous at best.
     
  13. May 24, 2015 #12
    Thanks Simon Bridge for your effort to answer me.

    Shouldn't it
    $$V=\frac{4\pi}{3}\frac{8G^3}{c^\textbf{6}}M^3$$
    I replace c2 with c6 :smile:
    Btw, you have confirmed my suspicion.
    "How can a black hole be more sparse than neutron star, or water for that matter (Is it 'matter', right. Not antimatter':smile:, but that should belong to another thread. Can we detect if this black hole comes from matter or antimatter) "?
    I think I made a mistake in my calculation. :rolleyes:
    Thanks a lot everybody.
     
  14. May 24, 2015 #13

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Yep - I leave these little errors so I can tell if people are paying attention ... either that or I just mess up ;)

    Note: there is, as yet, no way to tell an antimatter black hole from a matter black hole.
    This question gets asked a lot ... see:

    https://sciencequestionswithchris.wordpress.com/2014/05/16/how-can-you-tell-a-black-hole-made-out-of-antimatter-from-a-black-hole-made-out-of-matter/ [Broken]

    If this threatens to be a derail we can ask a mod to move it.
     
    Last edited by a moderator: May 7, 2017
  15. May 24, 2015 #14
    Hahahaha, very smart Simon Bridge. Who says that scientist are just intelligent. They're smart and witty, to.

    Btw, I have a question about black hole here
    https://www.physicsforums.com/threads/anti-matter-black-hole.815462/
    See, if anybody interested.

    Thanks for taking any efforts to answer me in this thread.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook