- #1
- 2
- 0
I'd like 2 solve the following problem (well, routinely solve a bunch of such problems):
Let us have a number of points (vertices), that can be interconnected. Not any 2 points are connected. Each connection is assigned a value. I want 2 find the maximum path in the graph, that is, the one with the highest connection score (of course, visiting any point only once). Optionally, scores may be direction-dependent, that is, the value of connecting point A 2 B is not necessary equal 2 the value of B -> A. Also optionally, I want 2 specify, or limit, the number of vertices (out of the whole set) I want 2 connect. Also optionally, I want some particular vertices 2 be included by all means.
I found that the problem of minimizing such score is well-known, call it route optimization, or "traveling postman (salesman)". But I haven't found the software that solves my particular problem. Maybe it's realized in a software suite, but I'm not aware of it. I'm waiting 4 your ideas...
Let us have a number of points (vertices), that can be interconnected. Not any 2 points are connected. Each connection is assigned a value. I want 2 find the maximum path in the graph, that is, the one with the highest connection score (of course, visiting any point only once). Optionally, scores may be direction-dependent, that is, the value of connecting point A 2 B is not necessary equal 2 the value of B -> A. Also optionally, I want 2 specify, or limit, the number of vertices (out of the whole set) I want 2 connect. Also optionally, I want some particular vertices 2 be included by all means.
I found that the problem of minimizing such score is well-known, call it route optimization, or "traveling postman (salesman)". But I haven't found the software that solves my particular problem. Maybe it's realized in a software suite, but I'm not aware of it. I'm waiting 4 your ideas...