Second Derivative Theorems

  • Thread starter Orion1
  • Start date
969
2


I am posting my theorems for peer review, anyone interested in posting some proofs using some simple functions?

Can these theorems be reduced into simpler equations?

Orion1 Second Derivative Theorems:
[tex]\frac{d^2}{dx^2} (x) = 0[/tex]
[tex]\frac{d^2}{dx^2} (x^2) = 2[/tex]
[tex]\frac{d^n}{dx^n} (x^n) = n![/tex]
[tex]\frac{d^2}{dx^2} (x^n) = n(n - 1) x^{n - 2}[/tex]
[tex]\frac{d^2}{dx^2} (x^{-n}) = n(n + 1)x^{-n - 2}[/tex]

[tex]\frac{d^2}{dx^2} \left[ f(x) \pm g(x) \right] = \frac{d^2}{dx^2} [f(x)] \pm \frac{d^2}{dx^2} [g(x)][/tex]

[tex]\frac{d^2}{dx^2} [f(x) \cdot g(x)] = \frac{d^2}{dx^2} [f(x)] \cdot g(x) + 2 \frac{d}{dx} [f(x)] \cdot \frac{d}{dx} [g(x)] + \frac{d^2}{dx^2} [g(x)] \cdot f(x)[/tex]

[tex]\frac{d^2}{dx^2} \left[ \frac{f(x)}{g(x)} \right] = \frac{\frac{d^2}{dx^2} [f(x)] \cdot [g(x)]^2 - 2 \frac{d}{dx} [f(x)] \cdot g(x) \cdot \frac{d}{dx} [g(x)] + \left[ g(x) \cdot \frac{d^2}{dx^2} [g(x)] - 2 \left( \frac{d}{dx} [g(x)] \right)^2 \right] \cdot f(x)}{[g(x)]^3}[/tex]

 
788
0
[tex]\frac{d^n}{dx^n} (x^n) = n![/tex]

Ah, at first I disagreed. But now I see it. I like that one.
 
Last edited:

robphy

Science Advisor
Homework Helper
Insights Author
Gold Member
5,381
661
The pattern in [tex]\frac{d^2}{dx^2} [f(x) \cdot g(x)] = \frac{d^2}{dx^2} [f(x)] \cdot g(x) + 2 \frac{d}{dx} [f(x)] \cdot \frac{d}{dx} [g(x)] + \frac{d^2}{dx^2} [g(x)] \cdot f(x)[/tex]
is more easily seen using the "prime" notation:
[tex] (fg)'' = f''g+2f'g'+fg''[/tex]
...the coefficients are just like those in
[tex] \begin{align*}
(f+g)^2
&= f^2g^0+2f^1g^1+f^0g^2
\end{align*}[/tex]
 

lurflurf

Homework Helper
2,417
122
[tex]\frac{d^2}{dx^2}u^v=2u^{v-1}\frac{du}{dx}\frac{dv}{dx}+v(v-1)u^{v-2}(\frac{du}{dx})^2+v u^{v-1}\frac{d^2u}{dx^2}+u^v\log^2(u)(\frac{dv}{dx})^2+u^v\log(u)\frac{d^2v}{dx^2}[/tex]
 
969
2
functional malfunction...

lurflurf theorem:
[tex]\frac{d^2}{dx^2}u^v=2u^{v-1}\frac{du}{dx}\frac{dv}{dx}+v(v-1)u^{v-2}\left(\frac{du}{dx}\right)^2+vu^{v-1}\frac{d^2u}{dx^2}+u^v\log^2(u)\left(\frac{dv}{dx}\right)^2+ u^v\log(u)\frac{d^2v}{dx^2}[/tex]



lurflurf, your theorem appears to be missing a factor: [tex][1 + v \ln(u)][/tex]

Orion1 second derivative theorem:
[tex]\frac{d^2}{dx^2}u^v=2u^{v-1}[1+v\ln(u)]\frac{du}{dx}\frac{dv}{dx}+v(v-1)u^{v-2}\left(\frac{du}{dx}\right)^2+vu^{v-1}\frac{d^2u}{dx^2}+u^v\ln^2(u)\left(\frac{dv}{dx}\right)^2+u^v\ln(u)\frac{d^2v}{dx^2}[/tex]

Is this theorem correct?

 
Last edited:

Related Threads for: Second Derivative Theorems

  • Posted
Replies
4
Views
2K
  • Posted
Replies
3
Views
4K
  • Posted
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
  • Posted
Replies
4
Views
481
  • Posted
Replies
2
Views
848
Replies
1
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top