Karlisbad
- 127
- 0
Let be a functional S so \delta S =0 give the Euler-Lagrange equation where:
S= \int_{a}^{b}dtL(q,\dot q, t)
My question is ..How the "second variation" \delta ( \delta S )=0= \delta ^{2} S defined??.. in order we could decide if a function q=q(t) is either a maximum or a minimum point of function space..
thanks.
S= \int_{a}^{b}dtL(q,\dot q, t)
My question is ..How the "second variation" \delta ( \delta S )=0= \delta ^{2} S defined??.. in order we could decide if a function q=q(t) is either a maximum or a minimum point of function space..

