Physics 325 - Modern Physics II
Origins of quantum mechanics, a historical perspective. Concepts of wave mechanics and applications: atoms, molecules, and solids. Kinetic theory of gases; distribution functions; statistics of quantum gases with applications.
Course Hours: H(3-3)
Prerequisite(s): Physics 211 or 221 or 227; Physics 213 or 223 or 255 or 259 or 355; Mathematics 211 or 213 or 221.
Antirequisite(s): Credit for both Physics 325 and 209 will not be allowed.
Physics 341 - Classical Mechanics I
Forced and damped harmonic oscillations with real and complex numbers; anharmonic oscillators; central force motion and scattering; non-inertial frames; 2- and 3-body problems; applications of linear differential equations and complex numbers.
Course Hours: H(3-3/2)
Prerequisite(s): Physics 225 or 227 or 321; Mathematics 211 or 213 or 221.
Corequisite(s): Prerequisite or Corequisite: Applied Mathematics 307 or Mathematics 253 or 263.
Physics 343 - Classical Mechanics II
Rotating frames of reference; general rotations of rigid bodies; moment of inertia tensor; eigenvalues and eigenvectors; Lagrangian and Hamiltonian mechanics; potential theory and tides; perturbation theory.
Course Hours: H(3-0)
Prerequisite(s): Physics 341.
Physics 381 - Computational Physics I
Solution of problems associated with the analysis of physical systems, using digital computers, high level programming languages, and mathematical computation systems.
Course Hours: H(1 - 3)
Prerequisite(s): Computer Science 217 or 231.
Corequisite(s): Prerequisite or Corequisite: Physics 343.
Antirequisite(s): Credit for both Physics 381 and 499 will not be allowed.
Physics 397 - Applied Physics Laboratory I
Basic laboratory electronics, vacuum systems, and optical devices. Introduction to experimental control, data collection, and analysis. Fundamentals of error analysis and error propagation.
Course Hours: H(2-1T-3)
Corequisite(s): Prerequisite or Corequisite: Physics 223 or 255 or 259 or 355.
Applied Mathematics 307 - Differential Equations for Engineers 
Definition, existence and uniqueness of solutions, first and second order equations with applications, series solutions about regular points and singular points, special functions. Laplace transform, systems of equations.
Course Hours: H(3-1.5T)
Prerequisite(s): One of Mathematics 211 or 213 or 221; and Applied Mathematics 219 or Mathematics 253.
Antirequisite(s): Credit for both Applied Mathematics 307 and 311 will not be allowed.
Applied Mathematics 309 - Vector Calculus for Engineers
Functions of several variables, chain rule and differentials. Vector calculus, line, surface and volume integrals, Green's, Gauss' and Stokes' theorems. Students will complete a project using a computer algebra system.
Course Hours: H(3-1.5T)
Prerequisite(s): Applied Mathematics 219 or Mathematics 114 and one of Mathematics 253 or 263 or 283.
Antirequisite(s): Credit for more than one of Mathematics 353, 381, and Applied Mathematics 309 will not be allowed.
One of:
Mathematics 311 - Linear Methods II
Vector spaces and subspaces. Linear independence. Matrix representations of linear transformations. Gram-Schmidt orthogonalization. Students will complete a project using a computer algebra system.
Course Hours: H(3-1T)
Prerequisite(s): One of Mathematics 211 or 213 or 221.
Antirequisite(s): Credit for both Mathematics 311 and 313 will not be allowed.
or
Mathematics 313 - Honours Linear Algebra II
Diagonalization. Canonical forms. Inner products, orthogonalization. Spectral theory. Students will be required to complete a project using a computer algebra system.
Course Hours: H(3-1T)
Prerequisite(s): Mathematics 213 or a grade of B+ or better in Mathematics 211 or 221.
Antirequisite(s): Credit for both Mathematics 311 and 313 will not be allowed.
2 Non-science options