(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

In an effort to keep me from spending all summer lying on the couch, I recently started reading Michael Spivak's Calculus on Manifolds; while working on problem 1-6 I got stuck on a technical detail and I was wondering if anyone could provide a little insight.

Problem 1-6 says:

Let [itex] f [/itex] and [itex] g [/itex] be integrable functions on [itex] [a,b] [/itex].

Prove that [itex] |\int_a^b fg | \leq (\int_a^b f^2)^{1/2}(\int_a^b g^2)^{1/2} [/itex].

2. Relevant equations

He suggests that you treat the cases [itex] 0=\int_a^b (f-\lambda g)^2 [/itex] for some [itex] \lambda \in R [/itex] and [itex] 0 \lt \int_a^b (f-\lambda g)^2 [/itex] for all [itex] \lambda [/itex] separately.

3. The attempt at a solution

My question is: how do I know the [itex] \lambda [/itex] is unique?

Considering the two cases given above I got a cuadratic expression in [itex] \lambda [/itex] whose discriminant gave me the strict inequality when [tex] 0 \lt \int_a^b (f-\lambda g)^2 [/tex] for all [itex] \lambda [/itex] (since there are no real roots of the equation), but in order to conclude that [\tex] |\int_a^b fg | \leq (\int_a^b f^2)^{1/2}(\int_a^b g^2)^{1/2} [/tex] I am forced to assume that the discriminant of the equation is equal to zero (otherwise I get [tex] |\int_a^b fg | \geq (\int_a^b f^2)^{1/2}(\int_a^b g^2)^{1/2} [/tex], which is obviously wrong), meaning that there is only one root of the equation, or equivalently that the lambda that satisfies [itex] 0=\int_a^b (f-\lambda g)^2 [/itex] is unique, fact that I feel must be proven, not assumed).

How do I know said lambda is unique? Keep in mind that since f and g are integrable (but may not be continuous) one cannot assume that [tex] 0=\int_a^b (f)^2 [/tex] implies [tex] f=0 [/tex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Self studying little Spivak's, stuck on Schwartz ineq. for integrals

**Physics Forums | Science Articles, Homework Help, Discussion**