Separability of Hilbert Spaces

Andre' Quanta
Messages
32
Reaction score
0
Why we require the separability of Hilbert spaces in Quantum Mechanics?
 
Physics news on Phys.org
Andre' Quanta said:
Why we require the separability of Hilbert spaces in Quantum Mechanics?

In reality any actual observation is from a finite dimensional space - but sometimes of a large but unknown dimension. To handle that a limit is taken and you end up with Rigged Hilbert spaces which are separable.

To be specific the space is of vectors of finite dimension but of any size. Mathematically we take the dual which is the Rigged Hilbert space of this space. It is separable - but convergent only under a very weak topology. Such a large space isn't actually required in practice and part of the art of using Rigged Hilbert spaces is figuring out exactly what subset is needed:
http://arxiv.org/abs/quant-ph/0502053Thanks
Bill
 
Last edited:
Because of results like the Stone-von Neumann theorem. In non-relativistic QM, this theorem asserts that any irreducible unitary realization of the (integrated form of the) canonical commutation relations on a complex Hilbert space ##H## (in principle, not necessarily separable) is unitarily equivalent to the standard realization in the separable space ##L^{2}(R^{3})##, i.e., only in a separable space you can get one such irreducible unitary realizations. Similar results hold for the representation theory of the Poincaré group in relativistic QM.
 
  • Like
Likes dextercioby
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top