MHB Series involving Glaisher–Kinkelin constant

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Constant Series
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\sum_{k\geq 2}\frac{\log(k)}{k^2}=\zeta(2)\left(\log A^{12}-\gamma-\log(2\pi) \right)$$
 
Physics news on Phys.org
$\displaystyle \sum_{k=1}^{\infty} \frac{\ln k}{k^{2}} = \zeta'(2) $I'm going to use the closed-form expression $$\log A = \frac{1}{12} - \zeta'(-1)$$

and the functional equation $$\zeta(s) = 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{s} \right) \Gamma(1-s) \zeta(1-s)$$Then

$$ \zeta'(s) = 2^{s} \log (2) \ \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) + 2^{s} \pi^{s-1} \log (\pi) \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)$$

$$ + \ 2^{s} \pi^{s-1} \frac{\pi}{2} \cos \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) - 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma'(1-s) \zeta(1-s) $$

$$ - 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta'(1-s)$$So

$$ \zeta'(-1) =\frac{\log 2}{2 \pi^{2}} (-1)(1) \zeta(2) + \frac{\log \pi }{2 \pi^{2}} (-1)(1) \zeta(2) + 0 + \frac{1}{2 \pi^{2}}(-1) (1 - \gamma) \zeta(2) + \frac{1}{2 \pi^{2}}(-1)(1) \zeta'(2)$$$$ \implies \zeta'(2) = \zeta(2) \big( - \log(2 \pi) + 1- \gamma \big) - 2 \pi^{2} \zeta'(-1) $$

$$ =\zeta(2) \big( - \log(2 \pi) +1 -\gamma \big) - 2 \pi^{2} \Big( \frac{1}{12} - \log A \Big) $$

$$ = \zeta(2) \big( - \log(2 \pi) +1 - \gamma \big) - \zeta(2) + 12 \zeta(2) \log A $$

$$ = \zeta(2) \Big( 12 \log A - \gamma - \log(2 \pi) \Big)$$
 
Last edited by a moderator:
I've encountered a few different definitions of "indefinite integral," denoted ##\int f(x) \, dx##. any particular antiderivative ##F:\mathbb{R} \to \mathbb{R}, F'(x) = f(x)## the set of all antiderivatives ##\{F:\mathbb{R} \to \mathbb{R}, F'(x) = f(x)\}## a "canonical" antiderivative any expression of the form ##\int_a^x f(x) \, dx##, where ##a## is in the domain of ##f## and ##f## is continuous Sometimes, it becomes a little unclear which definition an author really has in mind, though...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K