MHB Series involving Glaisher–Kinkelin constant

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Constant Series
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\sum_{k\geq 2}\frac{\log(k)}{k^2}=\zeta(2)\left(\log A^{12}-\gamma-\log(2\pi) \right)$$
 
Mathematics news on Phys.org
$\displaystyle \sum_{k=1}^{\infty} \frac{\ln k}{k^{2}} = \zeta'(2) $I'm going to use the closed-form expression $$\log A = \frac{1}{12} - \zeta'(-1)$$

and the functional equation $$\zeta(s) = 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{s} \right) \Gamma(1-s) \zeta(1-s)$$Then

$$ \zeta'(s) = 2^{s} \log (2) \ \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) + 2^{s} \pi^{s-1} \log (\pi) \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)$$

$$ + \ 2^{s} \pi^{s-1} \frac{\pi}{2} \cos \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) - 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma'(1-s) \zeta(1-s) $$

$$ - 2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \zeta'(1-s)$$So

$$ \zeta'(-1) =\frac{\log 2}{2 \pi^{2}} (-1)(1) \zeta(2) + \frac{\log \pi }{2 \pi^{2}} (-1)(1) \zeta(2) + 0 + \frac{1}{2 \pi^{2}}(-1) (1 - \gamma) \zeta(2) + \frac{1}{2 \pi^{2}}(-1)(1) \zeta'(2)$$$$ \implies \zeta'(2) = \zeta(2) \big( - \log(2 \pi) + 1- \gamma \big) - 2 \pi^{2} \zeta'(-1) $$

$$ =\zeta(2) \big( - \log(2 \pi) +1 -\gamma \big) - 2 \pi^{2} \Big( \frac{1}{12} - \log A \Big) $$

$$ = \zeta(2) \big( - \log(2 \pi) +1 - \gamma \big) - \zeta(2) + 12 \zeta(2) \log A $$

$$ = \zeta(2) \Big( 12 \log A - \gamma - \log(2 \pi) \Big)$$
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K