Series with binomial coefficients

ydydry
Messages
4
Reaction score
0
Hi all, I have an apparently simple equation. I copy here its Mathematica code:

Sum[(p/(1 - p))^s*(q/(1 - q))^s*Binomial[n, s]*(Binomial[m - 1, s]*(p*q*(m + n) + (2*m - 1)*(-p - q + 1))), {s, 0, n}] == Sum[(p/(1 - p))^s*(q/(1 - q))^s*Binomial[n, s]*((-(-p - q + 1))*Binomial[m - 2, s] + m*p*q*Binomial[m, s] + m*(-p - q + 1)*(Binomial[m - 2, s] + Binomial[m, s])), {s, 0, n}]

Mathematica's FullSimplify command immediately tells me that it is an identity, giving me "True" as output, but I fail to see the analytical reason.

All parameters are weakly positive and reals, although I do not need to assume anything for Mathematica to tell me that it is indeed an identity.

Thanks a lot!
 
Mathematics news on Phys.org
Try translating the equation into latex form.
 
\overset{n}{\underset{s=0}{\sum }}\left( \frac{pq}{(1-p)(1-q)}\right)
^{s}\left( \begin{array}{c}n \\
s%
\end{array}%
\right) \left[ \left( \begin{array}{c}m-1 \\
s%
\end{array}%
\right) (pq(m+n)+(2m-1)(1-p-q))\right] =\overset{n}{\underset{s=0}{\sum }}%
\left( \frac{pq}{(1-p)(1-q)}\right) ^{s}\left( \begin{array}{c}n \\
s%
\end{array}%
\right) \left[ (m-1)\left( \begin{array}{c}m-2 \\
s%
\end{array}%
\right) (1-p-q)+\left( \begin{array}{c}m \\
s%
\end{array}%
\right) mpq+\left( \begin{array}{c}m \\
s%
\end{array}%
\right) m(1-p-q))\right]
 
I apologize for the last attempt to write the code in Latex. I am not familiar with the software, and I clearly failed. I enclose a picture of the expression, which should be more readable than the non-sense above code
 

Attachments

  • Sin título.png
    Sin título.png
    17 KB · Views: 581
It looks messy enough. Try looking at the expression to the right of nCs on both sides and see if they are equal.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top