- #1
- 1,439
- 2
[settled] Settle this Disagreement? Concerning Conservation of Angular Momentum
[settled] Hello,
In my Classical Mechanics exercise session we had an exercise with a bike rolling without slipping. You had the calculate the acceleration at which the bike's front wheel would lift off from the ground (and there was a motor on the rear wheel).
I had a disagreement with the assistent regarding the physical origin of this effect (or rather, the principle cause). According to him it was due to friction (some weird coupling of friction that happened to result into this), while I claimed it was a direct cause of conservation of angular momentum.
First I claimed the same effect would also happen with a motorcycle on ice, with which he disagreed. He claimed that the change of angular momentum in the rear wheel was being balanced by a change of angular momentum in the motor attached to the wheel, so that conservation of angular momentum would not manifest itself in turning the frame of the motorbike. Eventually I seemed to have convinced him of my point (by for example replacing the engine with a human -on the bike seat- turning the rear wheel himself) and he agreed it would happen on ice, but he said they were very different situations in the sense that in the second case it is the manifestation of another effect, one not responsible for the first case.
For the purist it might seem non-sensical to argue about the physical origin of this, since I suppose in a sense there is no clear distinction between "it's the friction" or "it's the conservation of angular momentum", because everything, in the end, is nothing more and nothing less than the three laws of Newton, but I think that if you take it a bit more informal it is okay to talk about the principle explanation for the effect, and I think it's clear there's a clear distinction between my views and those of the assistant (and also a promimenent student of the class agreed with the assistant, which made me less certain of my claim, but I still see more logic in my reasoning than his).
What do you think? Isn't it just conservation of angular momentum that makes the frame of the bike tilt up when I accelerate my rear wheel?
[settled] Hello,
In my Classical Mechanics exercise session we had an exercise with a bike rolling without slipping. You had the calculate the acceleration at which the bike's front wheel would lift off from the ground (and there was a motor on the rear wheel).
I had a disagreement with the assistent regarding the physical origin of this effect (or rather, the principle cause). According to him it was due to friction (some weird coupling of friction that happened to result into this), while I claimed it was a direct cause of conservation of angular momentum.
First I claimed the same effect would also happen with a motorcycle on ice, with which he disagreed. He claimed that the change of angular momentum in the rear wheel was being balanced by a change of angular momentum in the motor attached to the wheel, so that conservation of angular momentum would not manifest itself in turning the frame of the motorbike. Eventually I seemed to have convinced him of my point (by for example replacing the engine with a human -on the bike seat- turning the rear wheel himself) and he agreed it would happen on ice, but he said they were very different situations in the sense that in the second case it is the manifestation of another effect, one not responsible for the first case.
For the purist it might seem non-sensical to argue about the physical origin of this, since I suppose in a sense there is no clear distinction between "it's the friction" or "it's the conservation of angular momentum", because everything, in the end, is nothing more and nothing less than the three laws of Newton, but I think that if you take it a bit more informal it is okay to talk about the principle explanation for the effect, and I think it's clear there's a clear distinction between my views and those of the assistant (and also a promimenent student of the class agreed with the assistant, which made me less certain of my claim, but I still see more logic in my reasoning than his).
What do you think? Isn't it just conservation of angular momentum that makes the frame of the bike tilt up when I accelerate my rear wheel?
Last edited: