Shelby's question at Yahoo Answers (Finding P with P^{-1}AP=D)

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on finding the matrix P such that P-1AP=D for the given 3x3 matrix A. The characteristic polynomial of A is computed as χ(λ) = (-λ + 2)(λ + 1)2, yielding eigenvalues λ=2 (simple) and λ=-1 (double). Corresponding eigenvectors are determined, leading to the diagonal matrix D = [[2, 0, 0], [0, -1, 0], [0, 0, -1]] and the invertible matrix P = [[1, -1, -1], [1, 1, 0], [1, 0, 1]]. The relationship P-1AP=D is verified through matrix multiplication.

PREREQUISITES
  • Understanding of characteristic polynomials in linear algebra
  • Knowledge of eigenvalues and eigenvectors
  • Familiarity with matrix operations and transformations
  • Ability to perform matrix diagonalization
NEXT STEPS
  • Study the process of computing characteristic polynomials for larger matrices
  • Learn about the implications of eigenvalues and eigenvectors in system stability
  • Explore matrix diagonalization techniques in more complex scenarios
  • Investigate the applications of diagonalization in differential equations
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as data scientists and engineers working with matrix computations and transformations.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let A be the real 3x3-matrix A =
0 1 1
1 0 1
1 1 0

(a) Compute the characteristic polynomial of A.
(b) Compute the eigenvalues of A.
(c) Compute the corresponding eigenvectors.
(d) Give a diagonal matrix D and an invertible matrix P such that D = (P^-1)AP.

Here is a link to the question:

Eigenvalues and eigenvectors question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Shelby,

$(a)$ Using the transformations $R_2\to R_2-R_1$, $R_3\to R_3-R_1$ and $C_1\to C_1+C_2+C_3$ we get the characteistic polynomial: $$\begin{aligned}
\chi(\lambda)&=\begin{vmatrix}{-\lambda}&{\;\;1}&{\;\;1}\\{\;\;1}&{-\lambda}&{\;\;1}\\{\;\;1}&{\;\;1}&{-\lambda}\end{vmatrix}\\&=\begin{vmatrix}{-\lambda}&{\;\;1}&{\;\;1}\\{\;\;1+\lambda}&{-\lambda}-1&{\;\;0}\\{\;\;1+\lambda}&{\;\;0}&{-\lambda-1}\end{vmatrix}\\&=\begin{vmatrix}{-\lambda+2}&{\;\;1}&{\;\;1}\\{\;\;0}&{-\lambda}-1&{\;\;0}\\{\;\;0}&{\;\;0}&{-\lambda-1}\end{vmatrix}\\&=(-\lambda+2)(\lambda+1)^2
\end{aligned}$$ $(b)$ Eigenvalues: $(-\lambda+2)(\lambda+1)^2=0$, so we get $\lambda=2$ (simple) and $\lambda=-1$ (double).
$(c)$ The eigenvectors are: $$\ker (A-2I)\equiv \left \{ \begin{matrix}-2x_1+x_2+x_3=0\\x_1-2x_2+x_3=0\\x_1+x_2-2x_3=0\end{matrix}\right. $$ As $\lambda=2$ is simple, $\dim(\ker(A-2I))=1$ and easily we find a basis of this eigenspace: $B_2=\{(1,1,1)\}$. On the other hand: $$\ker (A+I)\equiv \left \{ \begin{matrix}x_1+x_2+x_3=0\\x_1+x_2+x_3=0\\x_1+x_2+x_3=0\end{matrix}\right.$$ Now, $\dim(\ker(A+I))=3-\mbox{rank }(A+I)=3-1=2$ and easily we find a basis of this eigenspace: $B_{-1}=\{(-1,1,0),(-1,0,1)\}$.

$(d)$ As a consequence of $(c)$:
$$D=\begin{bmatrix}{2}&{\;\;0}&{\;\;0}\\{0}&{-1}&{\;\;0}\\{0}&{\;\;0}&{-1}\end{bmatrix}\;,\quad P=\begin{bmatrix}{1}&{-1}&{-1}\\{1}&{\;\;1}&{\;\;0}\\{1}&{\;\;0}&{\;\;1} \end{bmatrix}$$ We can verify the result proving that $AP=PD$ (which implies $P^{-1}AP=D$).
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K