I SHM: Do We Need to Assume Sign of k?

  • I
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Shm Sign
Mr Davis 97
Messages
1,461
Reaction score
44
I have the equation for simple harmonic motion ##\displaystyle \frac{d^2x}{dx^2} + k^2 x = 0##. I have a simple question. Do we need to make an assumption about the sign of ##k## before we solve this? We have that the roots satisfy ##r^2=-k^2##. So ##r=\pm i \sqrt{k^2}##. Do I need to assume ##k## is either positive or negative before I can proceed?
 
Physics news on Phys.org
Simple harmonic motion is what happens with a system that has a mass attached to a spring. The equation is ## m \frac{d^2 x}{dt^2}=-kx ##. The mass ## m ## and spring constant ## k ## are always both positive. The mass times acceleration is equal to the force which is opposite the displacement. ## \\ ## In the problem above ## k^2>0 ##. The sign of ## k ## doesn't matter. Most often, your ## k ## is actually written as ## \omega ##.
 
k is positive by definition, at least in this physics context.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top