Why Does the Equation x/2 = 3/y Represent a Hyperbola?

  • Thread starter Thread starter dynamic998
  • Start date Start date
  • Tags Tags
    Short
AI Thread Summary
The equation x/2 = 3/y represents a hyperbola because it can be transformed into a standard hyperbolic form through a coordinate rotation. By substituting new variables derived from a 90-degree rotation, the equation simplifies to v² - u² = 12, which is characteristic of hyperbolas. Additionally, the discussion includes a method for finding the third term of the expansion of (2x - y)³, which is determined to be 6xy² using combinations. The correct approach involves applying the binomial theorem for expansion. Understanding both the hyperbola representation and the binomial expansion method is essential for solving these mathematical problems.
dynamic998
x/2 = 3/y. Can anyone explain why this is an hyperbola?

find the third term of the expansion (2x-y)to the third power.
I know u have to do the things with the combinations but all i get is 20xy² but the answer is 6xy². Can anyone help?
 
Mathematics news on Phys.org
find the third term of the expansion (2x-y)to the third power.
I know u have to do the things with the combinations but all i get is 20xy?but the answer is 6xy? Can anyone help?

I think you mean to find the 3rd term in descending powers of x


Method 1:
(2x-y)3 = (Summation r from 0 to 3) C3r (2x)r (-y)3-r

So the third term
=C32(2x)(-y)2
=6xy2

Method 2:
You can expand (2x-y)3 directly.
 
To see that your first problem

x/2 = 3/y is a hyperbola, do a coordinate transform to rotate the coordinate axis by π/2 radians.

you will find that (let u & v be the new axis)

u=xcosθ + ysinθ
v=-xsinθ + ycosθ

Let θ = π/2

solve for x & y

x = (v-u)/sqrt(2) y=(v+u)/sqrt(2)

substituting this back into the origianal relationship gives

(v-u)(v+u)/2 =6

or

v*v - u*u = 12

This is the standard form for a hyperbola.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top