- #1

- 238

- 0

## Main Question or Discussion Point

I'm not up to calculus yet, but I was playing with functions and I had this idea that I wanted to ask about.

Is there an easy way to get the area under a curve given these restrictions:

1. The curve is described by second degree polynomial

2. The area we are interested in is the complete range between the zero's on the x-axis

In other words, what is the area under the curve between the zero's of a(x-b)(x-c)

It seems to be that this should be narrow enough to be calculable without doing series and integrals and whatnot (calculus, I don't know the exact approach yet), but I cant seem to find anything that fits.

So, is there a nice solution to this?

Is there an easy way to get the area under a curve given these restrictions:

1. The curve is described by second degree polynomial

2. The area we are interested in is the complete range between the zero's on the x-axis

In other words, what is the area under the curve between the zero's of a(x-b)(x-c)

It seems to be that this should be narrow enough to be calculable without doing series and integrals and whatnot (calculus, I don't know the exact approach yet), but I cant seem to find anything that fits.

So, is there a nice solution to this?