Should I always be careful about dimensional consistency?

  • Context: Undergrad 
  • Thread starter Thread starter Haorong Wu
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on dimensional consistency in quantum mechanics, specifically regarding the equation $$\left | m \right >=\int G(\mathbf k) \left | \mathbf k \right > \frac {d^2 k}{4 \pi^2}$$ where ##G(\mathbf k)## is the momentum space wave function. It is established that if ##|m\rangle## is dimensionless, then ##G(\mathbf{k})## must have dimensions of ##[m^2]## to maintain consistency. The conversation also clarifies that the states ##|\mathbf{k}\rangle## and ##\langle \mathbf{k}|## share the same dimensions, specifically ##1/\text{momentum}##, under the HEP/QFT convention.

PREREQUISITES
  • Understanding of quantum mechanics and wave functions
  • Familiarity with dimensional analysis in physics
  • Knowledge of Hilbert space and state normalization
  • Basic concepts of Fourier transforms in quantum field theory
NEXT STEPS
  • Study dimensional analysis in quantum mechanics
  • Learn about Hilbert space and its applications in quantum theory
  • Explore the implications of Fourier transforms in quantum field theory
  • Investigate the normalization of states in high-energy physics
USEFUL FOR

Physicists, quantum mechanics students, and researchers in high-energy physics looking to deepen their understanding of dimensional consistency and wave function analysis.

Haorong Wu
Messages
419
Reaction score
90
TL;DR
Will a dimensional inconsistency cause a problem?
I read an equation in a paper, $$\left | m \right >=\int G(\mathbf k) \left | \mathbf k \right > \frac {d^2 k}{4 \pi^2}$$ where ##G(\mathbf k)= \left < \mathbf k \right | \left . m \right >## is the momentum space wave function, ##k## is the two-dimensional frequency.

In this paper, ##\left | m \right >## is the transverse LG modes of a Gaussian beam, and it is dimensionless. Suppose ## \left | \mathbf k \right >## has a dimension of ##[m^l]##. Then from the definition of ##G(\mathbf k)##, it will have a dimension of ##[m^{-l}]##. But then the dimension of the equation will become ##[m^0]=[m^{-l+l-2}] ##, and that cause an inconsistency. Would it cause problems?
 
Last edited:
Physics news on Phys.org
If ##G(\mathbf{k}) = \langle \mathbf{k}|m\rangle## and ##|m\rangle## is dimensionless, then ##G(\mathbf{k})## has the same dimensions as ##|\mathbf{k}\rangle##
 
stevendaryl said:
If ##G(\mathbf{k}) = \langle \mathbf{k}|m\rangle## and ##|m\rangle## is dimensionless, then ##G(\mathbf{k})## has the same dimensions as ##|\mathbf{k}\rangle##
Thanks. I got confused because ##G(\mathbf{k})## given by the paper is clearly dimensionless, so I am trying to find a balance in that equation. However, I just find that ##G(\mathbf{k})## should have the dimension of ##[m^2]## and everything works out.

Thanks!
 
Hi, @stevendaryl , do ##\left | k \right > ## has the same dimension as ##\left < k \right |##?
 
It depends on how you normalize your states. Obviously in this case you have the HEP/QFT convention, i.e.,
$$\langle \vec{k}|\vec{k}' \rangle=(2 \pi)^2 \delta^{(2)}(\vec{k}-\vec{k}')$$
since you seem to work in 2D. That's because in this community you usually use natural units with ##\hbar=c=1## and in Fourier transforms you want for each energy or momentum integral a factor ##1/(2 \pi)##.

This implies that ##|\vec{k} \rangle## as well as ##\langle \vec{k}|## have dimension ##1/\text{momentum}##, and the completeness relation reads
$$\int_{\mathbb{R}^2} \frac{\mathrm{d}^2 k}{(2 \pi)^3} |\vec{k} \rangle \langle \vec{k}|=\hat{1}.$$
So you can expand all Hilbert space vectors in terms of these generalized momentum eigenvectors
$$|m \rangle=\int_{\mathbb{R}^2} \mathrm{d}^2 k \frac{1}{(2 \pi)^3} |\vec{k} \rangle \langle \vec{k}|m \rangle.$$
 
Haorong Wu said:
Hi, @stevendaryl , do ##\left | k \right > ## has the same dimension as ##\left < k \right |##?
It's usually the case that for any state ##|\psi\rangle##, the conjugate state ##\langle \psi |## has the same dimensions. You can think of ##|\psi\rangle## as a kind of column matrix (with maybe an infinite number of rows), and ##\langle \psi |## is the result of turning the column into a row (taking the transpose) and taking the complex-conjugate: ##\langle \psi| = (|\psi\rangle^T)^*##
 
  • Like
Likes   Reactions: Haorong Wu and vanhees71

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 27 ·
Replies
27
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 9 ·
Replies
9
Views
900
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K