Undergrad Should I always be careful about dimensional consistency?

  • Thread starter Thread starter Haorong Wu
  • Start date Start date
Click For Summary
Dimensional consistency is crucial in quantum mechanics, particularly when dealing with equations involving wave functions and momentum states. The equation presented shows that the momentum space wave function, G(k), is dimensionless, which raises questions about the dimensions of the states involved. It is clarified that the dimensions of |k⟩ and ⟨k| depend on normalization conventions, specifically in the context of two-dimensional space and natural units. The discussion emphasizes that maintaining dimensional consistency ensures the validity of the equations and their physical interpretations. Overall, understanding these relationships is essential for accurate calculations in quantum field theory.
Haorong Wu
Messages
419
Reaction score
90
TL;DR
Will a dimensional inconsistency cause a problem?
I read an equation in a paper, $$\left | m \right >=\int G(\mathbf k) \left | \mathbf k \right > \frac {d^2 k}{4 \pi^2}$$ where ##G(\mathbf k)= \left < \mathbf k \right | \left . m \right >## is the momentum space wave function, ##k## is the two-dimensional frequency.

In this paper, ##\left | m \right >## is the transverse LG modes of a Gaussian beam, and it is dimensionless. Suppose ## \left | \mathbf k \right >## has a dimension of ##[m^l]##. Then from the definition of ##G(\mathbf k)##, it will have a dimension of ##[m^{-l}]##. But then the dimension of the equation will become ##[m^0]=[m^{-l+l-2}] ##, and that cause an inconsistency. Would it cause problems?
 
Last edited:
Physics news on Phys.org
If ##G(\mathbf{k}) = \langle \mathbf{k}|m\rangle## and ##|m\rangle## is dimensionless, then ##G(\mathbf{k})## has the same dimensions as ##|\mathbf{k}\rangle##
 
stevendaryl said:
If ##G(\mathbf{k}) = \langle \mathbf{k}|m\rangle## and ##|m\rangle## is dimensionless, then ##G(\mathbf{k})## has the same dimensions as ##|\mathbf{k}\rangle##
Thanks. I got confused because ##G(\mathbf{k})## given by the paper is clearly dimensionless, so I am trying to find a balance in that equation. However, I just find that ##G(\mathbf{k})## should have the dimension of ##[m^2]## and everything works out.

Thanks!
 
Hi, @stevendaryl , do ##\left | k \right > ## has the same dimension as ##\left < k \right |##?
 
It depends on how you normalize your states. Obviously in this case you have the HEP/QFT convention, i.e.,
$$\langle \vec{k}|\vec{k}' \rangle=(2 \pi)^2 \delta^{(2)}(\vec{k}-\vec{k}')$$
since you seem to work in 2D. That's because in this community you usually use natural units with ##\hbar=c=1## and in Fourier transforms you want for each energy or momentum integral a factor ##1/(2 \pi)##.

This implies that ##|\vec{k} \rangle## as well as ##\langle \vec{k}|## have dimension ##1/\text{momentum}##, and the completeness relation reads
$$\int_{\mathbb{R}^2} \frac{\mathrm{d}^2 k}{(2 \pi)^3} |\vec{k} \rangle \langle \vec{k}|=\hat{1}.$$
So you can expand all Hilbert space vectors in terms of these generalized momentum eigenvectors
$$|m \rangle=\int_{\mathbb{R}^2} \mathrm{d}^2 k \frac{1}{(2 \pi)^3} |\vec{k} \rangle \langle \vec{k}|m \rangle.$$
 
Haorong Wu said:
Hi, @stevendaryl , do ##\left | k \right > ## has the same dimension as ##\left < k \right |##?
It's usually the case that for any state ##|\psi\rangle##, the conjugate state ##\langle \psi |## has the same dimensions. You can think of ##|\psi\rangle## as a kind of column matrix (with maybe an infinite number of rows), and ##\langle \psi |## is the result of turning the column into a row (taking the transpose) and taking the complex-conjugate: ##\langle \psi| = (|\psi\rangle^T)^*##
 
  • Like
Likes Haorong Wu and vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 27 ·
Replies
27
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 9 ·
Replies
9
Views
721
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K