I Show 4-Potential is 4-Vector in Lorenz Gauge

  • I
  • Thread starter Thread starter majinbeeb
  • Start date Start date
majinbeeb
Messages
2
Reaction score
0
I am trying to show that the four-potential is a four-vector when working in the Lorenz gauge. In this gauge, we have ## \Box A^{\mu} = 4\pi J^{\mu}##. If we perform a Lorentz transformation, we can show that ## \Box A'^{\mu} = \Box \Lambda_{\nu}^{\mu} A^{\nu}##. From what I have seen, people have used this to conclude that ## A'^{\mu} = \Lambda_{\nu}^{\mu} A^{\nu}##, but I don't see why this is necessarily the case. If we had any function ## \xi ## such that ## \Box \xi =0 ##, then we could have ## A'^{\mu} = \Lambda_{\nu}^{\mu} A^{\nu} + \partial^{\mu} \xi## instead, where ##\partial^{\mu} \xi## is not necessarily zero.

In a previous thread, someone invoked the quotient theorem. However the quotient theorem describes situations like if ## B_{\mu} C^{\mu \nu}## is a tensor whenever ## B_{\mu} ## is a tensor, then ##C^{\mu \nu}## is a tensor. This does not apply to our case, as we only know that ## S A^{\mu} ## is a tensor only when ## S = \Box##; we do not have the universal quantification necessary to invoke the quotient theorem.
 
Physics news on Phys.org
You can always add a function (meeting appropriate requirements) to the vector potential. It thus only ever determined up to such functions. Thus, you can say the 4-potential can be treated as a 4-vector with no loss of generality. You can perversely choose not to, I guess.
 
  • Like
Likes majinbeeb
PAllen said:
You can always add a function (meeting appropriate requirements) to the vector potential. It thus only ever determined up to such functions. Thus, you can say the 4-potential can be treated as a 4-vector with no loss of generality. You can perversely choose not to, I guess.

Thanks for the response. I do not find the idea of making a choice to set the function ##\xi ## to zero too troubling, but making such a choice feels somewhat artificial (at least when making this choice directly). Would it be possible to exclude such a term for more physical reasons, such as boundary conditions at infinity? A solution to ## \Box \xi = 0## is a linear combination of plane waves propagating at the speed of light, and these do not vanish at infinity, so we should choose ## \xi =0 ## for this reason. Does this line of reasoning make sense/ seem plausible?

Edit: Boundary conditions at infinity are tricky in a relativistic framework, the new time coordinate ## t'## in particular is problematic. I was kind of hoping for a condition that, when taken together with the Lorenz gauge condition, would give uniqueness of the four-potential.
 
Last edited:
PAllen said:
You can always add a function (meeting appropriate requirements) to the vector potential. It thus only ever determined up to such functions. Thus, you can say the 4-potential can be treated as a 4-vector with no loss of generality. You can perversely choose not to, I guess.
Why peversely? Often the Coulomb gauge is more convenient. Then you use a non-covariant four-potential. Of course, this is through the gauge dependence of the four-potential. The electromagnetic field is represented by the antisymmetric 2nd-rank field-strength tensor which is unanimously a Minkowski tensor.

Another very elegant possibility is to use the Riemann-Silberstein vector ##\vec{\mathfrak{F}}=\vec{E}+\mathrm{i} \vec{B}##, where the proper orthochronous Lorentz transformations are represented by ##\mathrm{SO}(3,\mathbb{C})## matrices. The rotations are of course represented by the usual ##\mathrm{SO}(3)## subgroup, and the rotation-free boosts by rotations with imaginary angles (which take the physical meaning of ##\mathrm{i}## times rapidity).
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...
Back
Top