Show Commutativity of Group with All Elements of Order 2 & Consider Zn

  • Thread starter Thread starter halvizo1031
  • Start date Start date
  • Tags Tags
    Groups
halvizo1031
Messages
77
Reaction score
0
I need help here: Suppose that G is a group in which every non-identity element has order two. Show that G is commutative.


Also, Consider Zn = {0,1,...,n-1}
a. show that an element k is a generator of Zn if and only if k and n are relatively prime.

b. Is every subgroup of Zn cyclic? If so, give a proof. If not, provide an example.
 
Mathematics news on Phys.org
What does it mean that G is commutative?
What possible ways to prove commutativity do you know of?

For the second one, I suggest starting with the "<==" implication (i.e. assume that k and n are relatively prime and show that k generates Zn.
 
CompuChip said:
What does it mean that G is commutative?
What possible ways to prove commutativity do you know of?

For the second one, I suggest starting with the "<==" implication (i.e. assume that k and n are relatively prime and show that k generates Zn.



for the first one, we can show commutativity with a multiplication table. How else?

for the second one, i want to start with ==> and say that the order of k is n/(m,n). but how can i show it?
 
OK let's take them one at a time.

The definition of commutativity is that xy = yx for any two elements x and y.
Can you explicitly show this in the case given?
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top