MHB Show How to Prove $\binom{n}{r}$ with Pascal's Triangle

  • Thread starter Thread starter JGalway
  • Start date Start date
  • Tags Tags
    Proof
JGalway
Messages
6
Reaction score
0
Repeatedly apply $\binom{n}{r}= \binom{n-1}{r}+\binom{n-1}{r-1}$ to show:

$$\binom{n}{r}=\sum_{i=1}^{r+1}\binom{n-i}{r-i+1}$$

The closest i got was showing you could show different iterations with the binomial coefficients (Pascal's Triangle).
 
Physics news on Phys.org
Hi JGalway,

To prove the result formally, I suggest using the principle of mathematical induction.
 
Euge said:
Hi JGalway,

To prove the result formally, I suggest using the principle of mathematical induction.

Thanks for the reply.
If it's just induction I think I will just ignore it I thought i was missing some property of ${n \choose r}$.(Never really liked induction)
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top