Euklidian-Space
- 38
- 0
Wabbit,wabbit said:@Euklidian-Space as you asked for more detail :
To expand this last step, let's assume uniform convergence, and take ## \epsilon=\frac{1}{2e} ## .
From the convergence of ## f_n(x_n) \rightarrow \frac{1}{e}## we know that
(1) ## \exists n_0,\forall n\geq n_0, f_n(x_n)>\frac{1}{2e}##
But uniform convergence ## f_n\rightarrow_u 0 ## tells us that
(2) ## \exists N, \forall n\geq N, \forall x \in [0,1], f(x)<\frac{1}{2e} ##
Now take any ## n\geq\max(n_0,N) ## and set ## x=x_n ## .
By (1) we have ## f_n(x)>\frac{1}{2e} ## , but (2) yields ## f_n(x)<\frac{1}{2e} ## so we have a contradiction.
i am getting ##f_{n}(x_{n}) = n\left(1-\frac{n}{n+1}\right)^{n+1}##
does that still converge to ##\frac{1}{e}?##