Show that ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that if \( \gcd(a, 42) = 1 \), then \( 168 = 3 \cdot 7 \cdot 8 \) divides \( a^{6} - 1 \). The proof utilizes Fermat's theorem to establish congruences \( a \equiv 1 \pmod{2} \), \( a^{2} \equiv 1 \pmod{3} \), and \( a^{6} \equiv 1 \pmod{7} \). Additionally, it demonstrates that \( a^{2} \equiv 1 \pmod{8} \) by analyzing the odd nature of \( a \). The conclusion confirms that since \( 3, 7, \) and \( 8 \) are relatively prime, \( 168 \) divides \( a^{6} - 1 \).

PREREQUISITES
  • Understanding of modular arithmetic
  • Fermat's Little Theorem
  • Basic number theory concepts, particularly gcd
  • Factorization of polynomials
NEXT STEPS
  • Study Fermat's Little Theorem in depth
  • Explore the properties of gcd and its applications in number theory
  • Learn about polynomial factorization techniques
  • Investigate the implications of modular arithmetic in proofs
USEFUL FOR

Mathematicians, number theorists, and students studying modular arithmetic and number theory proofs.

Math100
Messages
817
Reaction score
230
Homework Statement
If ## gcd(a, 42)=1 ##, show that ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
Relevant Equations
None.
Proof:

Suppose ## gcd(a, 42)=1 ##.
Then ## 42=2\cdot 3\cdot 7 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
This means ## a^{6}=(a^{2})^{3}\equiv 1\pmod {3} ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1)=(a-1)(a+1)(a^{2}+a+1)(a^{2}-a+1) ##.
Since ## a ## is odd, it follows that ## a>0\implies a\geq 3 ##.
Now we have ## a^{2}\equiv 1\pmod {8}\implies (a^{2})^{3}\equiv 1^{3}\pmod {8}\implies a^{6}\equiv 1\pmod {8} ##.
Thus, ## 168\mid (a^{6}-1) ## because ## 3, 7, 8 ## are relatively prime to each other.
Therefore, if ## gcd(a, 42)=1 ##, then ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: If ## gcd(a, 42)=1 ##, show that ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
Relevant Equations:: None.

Proof:

Suppose ## gcd(a, 42)=1 ##.
Then ## 42=2\cdot 3\cdot 7 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 7)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{6}\equiv 1\pmod {7} ##.
This means ## a^{6}=(a^{2})^{3}\equiv 1\pmod {3} ##.
Observe that ## a^{6}-1=(a^{3}-1)(a^{3}+1)=(a-1)(a+1)(a^{2}+a+1)(a^{2}-a+1) ##.
Since ## a ## is odd, it follows that ## a>0\implies a\geq 3 ##.
Now we have ## a^{2}\equiv 1\pmod {8}\implies (a^{2})^{3}\equiv 1^{3}\pmod {8}\implies a^{6}\equiv 1\pmod {8} ##.
Thus, ## 168\mid (a^{6}-1) ## because ## 3, 7, 8 ## are relatively prime to each other.
Therefore, if ## gcd(a, 42)=1 ##, then ## 168=3\cdot 7\cdot 8 ## divides ## a^{6}-1 ##.
Right, but what did you use the factorization of ##a^6-1## for? Instead, you should have explained ##a^2\equiv 1\pmod{8}.## E.g. by ##(2k+1)^2=4k(k+1)+1## where either ##k## or ##k+1## is even.
 
fresh_42 said:
Right, but what did you use the factorization of ##a^6-1## for? Instead, you should have explained ##a^2\equiv 1\pmod{8}.## E.g. by ##(2k+1)^2=4k(k+1)+1## where either ##k## or ##k+1## is even.
Absolutely nothing. Now, I just realized that I shouldn't factor out ## a^{6}-1 ##, because like you mentioned, I didn't use this on anything in this proof. Also, for the ## a^{2}\equiv 1\pmod {8} ## part, are you saying that letting ## a=2k+1 ## where ## k=2m ## for some ## k\in\mathbb{Z} ## can help better explain where we got the ## a^{2}\equiv 1\pmod {8} ## part from?
 
Math100 said:
Absolutely nothing. Now, I just realized that I shouldn't factor out ## a^{6}-1 ##, because like you mentioned, I didn't use this on anything in this proof. Also, for the ## a^{2}\equiv 1\pmod {8} ## part, are you saying that letting ## a=2k+1 ## where ## k=2m ## for some ## k\in\mathbb{Z} ## can help better explain where we got the ## a^{2}\equiv 1\pmod {8} ## part from?
Number theorists have it probably in mind: ##a\equiv 1\pmod{2}\Longrightarrow a^2\equiv 1\pmod{8}## but I had to use this additional line. From ##a\equiv 1\pmod{2}## we get ##a=2k+1## and ##a^2=4k(k+1)+1.## This shows ##a^2\equiv 1\pmod{8}## no matter whether ##k## is odd or even because ##\{k,k+1\}## always contains an even number.
 
Last edited:
  • Like
Likes   Reactions: Math100
fresh_42 said:
Number theorists have it probably in mind: ##a\equiv 1\pmod{2}\Longrightarrow a^2\equiv 1\pmod{8}## but I had to use this additional line. From ##a\equiv 1\pmod{2}## we get ##a=2k+1## and ##a^2=4k(k+1)+1.## This shows ##a^2\equiv 1\pmod{8}## no matter whether ##k## is odd or even because ##\{k,k+1\}## always contains an even number.
I have to use this additional line, too, given the fact that I am not a number theorist. In fact, I got the ## a^{2}\equiv 1\pmod {8} ## part, mainly because ## a ## is odd and so ## a>0, a\geq 3 ##, that's why I plugged in ## a=3 ## and got ## a^{2}=9, a^{2}\equiv 1\pmod {8} ##, but I think this is vague, just as you mentioned above, I should have explained this. Thank you for the additional line.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K