Show that ## 60 ## divides ## a^{4}+59 ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The proof demonstrates that if \( \gcd(a, 30) = 1 \), then \( 60 \) divides \( a^{4} + 59 \). By applying Fermat's theorem, it is established that \( a \equiv 1 \pmod{2} \), \( a^{2} \equiv 1 \pmod{3} \), and \( a^{4} \equiv 1 \pmod{5} \). The proof further shows that \( 4 \mid (a^{4} - 1) \) and since \( 60 = 3 \cdot 4 \cdot 5 \) with \( 3, 4, 5 \) being relatively prime, it follows that \( 60 \mid (a^{4} - 1) \). Thus, \( a^{4} \equiv -59 \pmod{60} \) confirms the conclusion.

PREREQUISITES
  • Understanding of modular arithmetic
  • Fermat's Little Theorem
  • Concept of greatest common divisor (gcd)
  • Basic properties of prime factorization
NEXT STEPS
  • Study Fermat's Little Theorem in-depth
  • Explore advanced topics in modular arithmetic
  • Learn about the Chinese Remainder Theorem
  • Investigate properties of divisibility and prime factorization
USEFUL FOR

Mathematicians, number theorists, students studying modular arithmetic, and anyone interested in proofs involving divisibility and gcd concepts.

Math100
Messages
817
Reaction score
230
Homework Statement
If ## gcd(a, 30)=1 ##, show that ## 60 ## divides ## a^{4}+59 ##.
Relevant Equations
None.
Proof:

Suppose ## gcd(a, 30)=1 ##.
Then ## 30=2\cdot 3\cdot 5 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 5)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{4}\equiv 1\pmod {5} ##.
This means ## gcd(a, 4)=gcd(a, 2^{2})=1 ##.
Observe that
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{2}\equiv 1\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{4}\equiv 1\pmod {3}.\\
\end{align*}
Now we have ## 2\mid (a^{2}-1)\implies a^{2}\equiv (1-2)\pmod {2}\equiv -1\pmod {2} ##,
so ## 4\mid (a^{2}+1)(a^{2}-1)\implies 4\mid (a^{4}-1) ##.
Since ## 60=3\cdot 4\cdot 5 ## and ## 3, 4, 5 ## are relatively prime to each other,
it follows that ## 60\mid (a^{4}-1) ##.
Thus ## a^{4}\equiv 1\pmod {60}\equiv (1-60)\pmod {60}\equiv -59\pmod {60} ##.
Therefore, if ## gcd(a, 30)=1 ##, then ## 60 ## divides ## a^{4}+59 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: If ## gcd(a, 30)=1 ##, show that ## 60 ## divides ## a^{4}+59 ##.
Relevant Equations:: None.

Proof:

Suppose ## gcd(a, 30)=1 ##.
Then ## 30=2\cdot 3\cdot 5 ## and ## gcd(a, 2)=gcd(a, 3)=gcd(a, 5)=1 ##.
Applying the Fermat's theorem produces:
## a\equiv 1\pmod {2}, a^{2}\equiv 1\pmod {3} ## and ## a^{4}\equiv 1\pmod {5} ##.
This means ## gcd(a, 4)=gcd(a, 2^{2})=1 ##.
Observe that
\begin{align*}
&a\equiv 1\pmod {2}\implies a^{2}\equiv 1\pmod {2}\\
&a^{2}\equiv 1\pmod {3}\implies a^{4}\equiv 1\pmod {3}.\\
\end{align*}
Now we have ## 2\mid (a^{2}-1)\implies a^{2}\equiv (1-2)\pmod {2}\equiv -1\pmod {2} ##,
so ## 4\mid (a^{2}+1)(a^{2}-1)\implies 4\mid (a^{4}-1) ##.
Since ## 60=3\cdot 4\cdot 5 ## and ## 3, 4, 5 ## are relatively prime to each other,
it follows that ## 60\mid (a^{4}-1) ##.
Thus ## a^{4}\equiv 1\pmod {60}\equiv (1-60)\pmod {60}\equiv -59\pmod {60} ##.
Therefore, if ## gcd(a, 30)=1 ##, then ## 60 ## divides ## a^{4}+59 ##.
The modulo ##2## case is a bit messy.

We have ##a\equiv 1\pmod{2}## so ##a^2\equiv 1\pmod{2}##. But then, ##a^2+1## and ##a^2-1## are both even, i.e. ##4\,|\,(a^2-1)(a^2+1)=a^4-1## or ##a^4\equiv 1\pmod{4}.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
The modulo ##2## case is a bit messy.

We have ##a\equiv 1\pmod{2}## so ##a^2\equiv 1\pmod{2}##. But then, ##a^2+1## and ##a^2-1## are both even, i.e. ##4\,|\,(a^2-1)(a^2+1)=a^4-1## or ##a^4\equiv 1\pmod{4}.##
I agree, since ## a ## is odd.
 
  • Like
Likes   Reactions: fresh_42

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K