Show that a nonlinear transformation preseves velocity

SevenHells
Messages
6
Reaction score
0

Homework Statement


I have a particle moving with uniform velocity in a frame ##S##, with coordinates $$ x^\mu , \mu=0,1,2,3. $$
I need to show that the particle also has uniform velocity in a frame ## S' ##, given by
$$x'^\mu=\dfrac{A_\nu^\mu x^\nu + b^\mu}{c_\nu x^\nu + d}, $$
with ## A_\nu^\mu,b^\mu,c_\nu x^\nu,d ## constant.

Homework Equations


I don't think these are very relevant because they're not the transformations for the question but
$$\Delta x = \gamma(\Delta x' + v\Delta t')$$
$$\Delta t = \gamma(\Delta t' + v\Delta x'/c^2)$$
$$\Delta x' = \gamma(\Delta x - v\Delta t)$$
$$\Delta t' = \gamma(\Delta t - v\Delta x/c^2)$$

The Attempt at a Solution


I wrote the ## S' ## coordinates out and using ## x'^0=t'##,##x'^1=x'##,##x'^2=y'##,##x'^3=z' ##, try to calculate the velocities but I don't think it's right. I'm not sure how to show a transformation preserves the particle velocity. Could anyone point me how to show this for the Lorentz transformations, and then I could try to do it for my transformations?
 
Last edited:
Physics news on Phys.org
Oh, and for inline math we use ## \#\# ## to start and end, not ##$##
 
BvU said:
Oh, and for inline math we use ## \#\# ## to start and end, not ##$##
I've fixed that now, thanks. Did you have something typed before "Oh,"?
 
Ummm, no ... :frown:
 
SevenHells said:
I have a particle moving with uniform velocity in a frame ##S##, with coordinates $$ x^\mu , \mu=0,1,2,3. $$
I need to show that the particle also has uniform velocity in a frame ## S' ##, given by
$$x'^\mu=\dfrac{A_\nu^\mu x^\nu + b^\mu}{c_\nu x^\nu + d}, $$
with ## A_\nu^\mu,b^\mu,c_\nu x^\nu,d ## constant.
"Uniform velocity" means zero acceleration. So you must show that if $$\frac{dv^i}{dt} \equiv \frac{d^2 x^i}{dt^2} = 0$$then
$$\frac{dv'^i}{dt'} \equiv\frac{d^2 x'^i}{dt'^2} = 0$$ (where ##i=1,2,3##).

BTW, what is the context of this problem? It's actually a classic -- the fractional linear transformations are known to be the most general transformations which preserve inertial motion. :-)

Not sure how much of a hint I should give you, so I'll start with this:

Work with the differentials, i.e., find ##dx^i## and ##dt## separately, then take their quotient to find an expression for ##v##. Take differential ##dv## similarly, and take its quotient with ##dt## to find the acceleration.

Further hints: use the chain rule to compute the various differentials.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top