MHB Show that if K is regular and M any language, then L is regular

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Language Regular
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $L=\{k |km \in K \text{ for some } m \in M\}$.

How can we show that if $K$ is regular and $M$ is any language, then $L$ is regular?? (Wondering)
 
Physics news on Phys.org
This is a nice problem. Take a DFA $(Q,\Sigma,\delta,q_0,F)$ that accept $K$ and make $q\in Q$ accepting iff $\delta(q,m)\in F$ for some $m\in M$. Here $\delta(q,m)$ is the extension of the transition function to strings.
 
Evgeny.Makarov said:
This is a nice problem. Take a DFA $(Q,\Sigma,\delta,q_0,F)$ that accept $K$ and make $q\in Q$ accepting iff $\delta(q,m)\in F$ for some $m\in M$. Here $\delta(q,m)$ is the extension of the transition function to strings.

So, is the transition function of $L$ the same as the transition function of $K$ ? If it stands that $\delta(q,m)\in F$ for some $m \in M$, then we make $q$ an accepting state. So the difference of the description of the two DFA's is the set of final states. Have I understood it correctly?
 
Yes, you understood it correctly.
 
Evgeny.Makarov said:
Yes, you understood it correctly.

Great! Thank you very much! (Smile)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
18
Views
3K
Replies
24
Views
4K
Replies
5
Views
2K
Replies
8
Views
711
Back
Top