Show that P, Q and D are collinear in the vector problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
SUMMARY

The discussion focuses on proving the collinearity of points P, Q, and D using vector equations. The participants derive expressions for vectors PB, AD, QD, and PQ, ultimately establishing that the relationship between PQ and QD is given by the equation PQ = (2/5)QD. Corrections were made regarding the multiplicative constants in the expressions for PQ and QD, confirming that both vectors share a scalar relationship, thereby demonstrating their collinearity.

PREREQUISITES
  • Understanding of vector notation and operations
  • Familiarity with scalar multiplication in vector spaces
  • Knowledge of collinearity in geometric contexts
  • Basic algebraic manipulation of equations
NEXT STEPS
  • Study vector operations in depth, focusing on scalar multiplication
  • Explore geometric interpretations of vector collinearity
  • Learn about vector equations and their applications in physics
  • Investigate alternative methods for proving collinearity using determinants
USEFUL FOR

Students and educators in mathematics, particularly those studying vector geometry, as well as anyone involved in physics or engineering applications that require an understanding of vector relationships and collinearity.

chwala
Gold Member
Messages
2,828
Reaction score
423
Homework Statement
See attached
Relevant Equations
Vectors
1653657401362.png


My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##OQ=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
for (b) (i) I find it correct
for (b) (ii) there seem to be some typos after the phrase "It follows that" please correct them. For example I think it should $$\vec{PQ}=\frac{1}{5\cdot 7}[25\vec{b}-4\vec{a}]$$ and the final equation should involve PQ and QD not OQ(?)
 
Last edited:
Delta2 said:
for (b) (i) I find it correct
for (b) (ii) there seem to be some typos after the phrase "It follows that" please correct them. For example I think it should $$\vec{PQ}=\frac{1}{5\cdot 7}[25b-4a]$$ and the final equation should involve PQ and QD not OQ(?)
Ok...I will check on that ...
 
  • Like
Likes   Reactions: Delta2
The correct final equation should be ##\vec{PQ}=\frac{2}{5}\vec{QD}##, at least that's what i think.
 
  • Like
Likes   Reactions: chwala
Delta2 said:
The correct final equation should be ##\vec{PQ}=\frac{2}{5}\vec{QD}##, at least that's what i think.
That should be correct...my working is fine, but the division part at the end was wrong...
 
  • Like
Likes   Reactions: Delta2
chwala said:
Homework Statement:: See attached
Relevant Equations:: Vectors

View attachment 301993

My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
Amended to ##QD##...I will amend division part later, using my android to type...
 
I find the expressions of PQ and QD wrong after the phrase "It follows that" regarding the multiplicative constant of each, please review and try to correct them.
 
Delta2 said:
I find the expressions of PQ and QD wrong after the phrase "It follows that" regarding the multiplicative constant of each, please review and try to correct them.
Yes I will...thanks for your input...
 
  • Like
Likes   Reactions: Delta2
chwala said:
Homework Statement:: See attached
Relevant Equations:: Vectors

View attachment 301993

My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##OQ=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
We ought to have;

It follows that,

##PQ=\dfrac{1}{35}\left[25b-4a\right]##

##QD=\dfrac{1}{14}\left[25b-4a\right]##

##35 PQ=(25b-4a)##
##14QD=(25b-4a)##

##35PQ=14QD##
##PQ=\dfrac{14}{35} QD##
##PQ=\dfrac{2}{5} QD##
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
1K