Show that P, Q and D are collinear in the vector problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary

Homework Help Overview

The discussion revolves around a vector problem involving points P, Q, and D, specifically focusing on demonstrating their collinearity. Participants are examining vector relationships and scalar multiples in the context of the problem.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants present various vector equations and relationships, attempting to express vectors PB, AD, QD, and PQ in terms of each other. There are discussions about potential typos in the expressions and the correctness of the multiplicative constants involved.

Discussion Status

There is ongoing dialogue about the accuracy of the vector expressions and the relationships between them. Some participants express confidence in their approaches, while others seek clarification and corrections regarding specific equations. Multiple interpretations of the final equations are being explored.

Contextual Notes

Participants mention a lack of access to solutions for verification, which may contribute to the uncertainty in their discussions. There are indications of typos and the need for amendments in the presented equations.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached
Relevant Equations
Vectors
1653657401362.png


My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##OQ=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
for (b) (i) I find it correct
for (b) (ii) there seem to be some typos after the phrase "It follows that" please correct them. For example I think it should $$\vec{PQ}=\frac{1}{5\cdot 7}[25\vec{b}-4\vec{a}]$$ and the final equation should involve PQ and QD not OQ(?)
 
Last edited:
Delta2 said:
for (b) (i) I find it correct
for (b) (ii) there seem to be some typos after the phrase "It follows that" please correct them. For example I think it should $$\vec{PQ}=\frac{1}{5\cdot 7}[25b-4a]$$ and the final equation should involve PQ and QD not OQ(?)
Ok...I will check on that ...
 
  • Like
Likes   Reactions: Delta2
The correct final equation should be ##\vec{PQ}=\frac{2}{5}\vec{QD}##, at least that's what i think.
 
  • Like
Likes   Reactions: chwala
Delta2 said:
The correct final equation should be ##\vec{PQ}=\frac{2}{5}\vec{QD}##, at least that's what i think.
That should be correct...my working is fine, but the division part at the end was wrong...
 
  • Like
Likes   Reactions: Delta2
chwala said:
Homework Statement:: See attached
Relevant Equations:: Vectors

View attachment 301993

My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
Amended to ##QD##...I will amend division part later, using my android to type...
 
I find the expressions of PQ and QD wrong after the phrase "It follows that" regarding the multiplicative constant of each, please review and try to correct them.
 
Delta2 said:
I find the expressions of PQ and QD wrong after the phrase "It follows that" regarding the multiplicative constant of each, please review and try to correct them.
Yes I will...thanks for your input...
 
  • Like
Likes   Reactions: Delta2
chwala said:
Homework Statement:: See attached
Relevant Equations:: Vectors

View attachment 301993

My interest is only on part (b),

For part (i), My approach is as follows,
##PB=PO+OB##
##PB=-\dfrac{2}{5}a +b##

##AD=AO+OD##
##AD=-a+\dfrac{5}{2}b##

Therefore, ##PB=\dfrac{2}{5}AD##

For part (ii), we shall have;

##QD=QB+BD##

##QD=\dfrac{2}{7}AB+\dfrac{3}{2}b##

##QD=-\dfrac{2}{7}a+\dfrac{2}{7}b+\dfrac{3}{2}b##

##QD=\dfrac{25}{14}b-\dfrac{2}{7}a##

also,
##PQ=PA+AQ##

##PQ=\dfrac{3}{5}a-\dfrac{5}{7}a+\dfrac{5}{7}b##

##PQ=\dfrac{5}{7}b-\dfrac{4}{35}a##

Therefore,

##PQ=\dfrac{1}{7}\left[5b-\dfrac{4}{5}a\right]##
&
##QD=\dfrac{1}{7}\left[\dfrac{25}{2}b-2a\right]##

It follows that,

##PQ=\dfrac{5}{7}\left[25b-4a\right]##

##QD=\dfrac{2}{7}\left[25b-4a\right]##

##OQ=\dfrac{2}{5} PQ## thus shown as there is a scalar connecting the two...seeking any alternative approach and i hope my working is correct as i do not have solutions to these questions...
We ought to have;

It follows that,

##PQ=\dfrac{1}{35}\left[25b-4a\right]##

##QD=\dfrac{1}{14}\left[25b-4a\right]##

##35 PQ=(25b-4a)##
##14QD=(25b-4a)##

##35PQ=14QD##
##PQ=\dfrac{14}{35} QD##
##PQ=\dfrac{2}{5} QD##
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
1K