Show that sq. root of 2 to power sq. root of 2 to N converges

  • Thread starter Thread starter sigdel977
  • Start date Start date
  • Tags Tags
    Power Root
sigdel977
Messages
2
Reaction score
0
Show that sq. root of 2 to power sq. root of 2 to ... N converges

Sq. root of 2^sq root of 2 ^ sq. of 2...N
Use monotonous convergence theorem to that it converges and determine what it converges to.
 
Physics news on Phys.org


Your definition of the sequence is ambiguous. Do you mean a_n+1=a_n^sqrt(2) or a_n+1=sqrt(2)^a_n? Try punching out some terms on a calculator of each. One of them doesn't converge. Then tell me what you need to prove about the sequence to use the monotone convergence theorem.
 


i ment,
(sq. rt of 2)^(sq. rt of 2)^(sq. rt of 2)^N
 


sigdel977 said:
i ment,
(sq. rt of 2)^(sq. rt of 2)^(sq. rt of 2)^N

sqrt(2)^sqrt(2)^sqrt(2) doesn't mean anything. (sqrt(2)^sqrt(2))^sqrt(2) and sqrt(2)^(sqrt(2)^sqrt(2)) are different. Use parentheses. It's easier if you define a_n+1 in terms of a_n.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top