Show that the Poiseuille field of flow is rotational

  • Thread starter Thread starter Ben2
  • Start date Start date
  • Tags Tags
    equations
AI Thread Summary
The discussion centers on demonstrating that the Poiseuille flow field is rotational. Participants express confusion over whether to hold y_1 = y_2 and the implications of a transverse velocity vector, noting that a velocity gradient can exist without a transverse component. They reference Figure 18-20, which illustrates horizontal streamlines with varying spacing, indicating a velocity gradient. The mathematical test for rotational flow involves checking if the line integral of the velocity field around closed paths is non-zero. The conversation concludes with a plan to apply these insights to solve related textbook problems.
Ben2
Messages
37
Reaction score
9
Homework Statement
From Halliday & Resnick, "Physics for Students of Science and Engineering", Problem 18.21: "The so-called Poiseuille field of flow is shown in Fig. 18-20. The spacing of the streamlines indicates that although the motion is rectilinear, there is a velocity gradient in the transverse direction. Show that such a flow is rotational."
Relevant Equations
A_1*v_1 = A_2*v_2 (Equation of continuity)
p_1 + (1/2)\rho*v_1^2 + \rho*g*y_1 = p_2 + (1/2)\rho*v_2^2 + \rho*g*y_2
I tried using these equations, but it's not clear if we should hold y_1 = y_2. A transverse velocity vector would produce a flow at some angle to the horizontal, but How do they known there's such a vector?
 
Physics news on Phys.org
Ben2 said:
I tried using these equations, but ....
Is there a relevant equation from the textbook related to "rotational flow"?

Ben2 said:
A transverse velocity vector would produce a flow at some angle to the horizontal, but How do they known there's such a vector?

Note that the homework statement says that there is a velocity gradient in the transverse direction. This does not imply that the velocity itself has a transverse component. You can have a velocity gradient in the transverse direction even though the velocity at every point is horizontal.

Can you describe Fig 18-20?
 
Set \mathbf{u}(x,y,z) = u(y)\mathbf{e}_x and compute the curl. Does it vanish identically?
 
I had a look at an old copy of Halliday's text. See if problem 18.20 contains information about how to check that a velocity field is irrotational or rotational by considering the line integral of the velocity field around closed paths: ##\oint \vec v \cdot \vec {ds}##. Then apply that to problem 18.21.
 
TSny said:
Is there a relevant equation from the textbook related to "rotational flow"?
Note that the homework statement says that there is a velocity gradient in the transverse direction. This does not imply that the velocity itself has a transverse component. You can have a velocity gradient in the transverse direction even though the velocity at every point is horizontal.

Can you describe Fig 18-20?
Thanks for your timely response! I've not previously heard of a velocity gradient. Figure 18-20 features ten horizontal streamlines, where the spacing narrows from top and bottom to the middle three. Theorem 10, Chapter 13 of Stewart's "Calculus" gives the curvature k(t) = |r'(t) x r"(t)|/|r'(t)|^3. But if there's no vector in the transverse direction, I don't see how to prove the flow is rotational.
 
Ben2 said:
Thanks for your timely response! I've not previously heard of a velocity gradient. Figure 18-20 features ten horizontal streamlines, where the spacing narrows from top and bottom to the middle three. Theorem 10, Chapter 13 of Stewart's "Calculus" gives the curvature k(t) = |r'(t) x r"(t)|/|r'(t)|^3. But if there's no vector in the transverse direction, I don't see how to prove the flow is rotational.
I’m not sure what edition of the textbook you have. I found a very early edition. In section 18-1 it gives a qualitative description of rotational and irrotational flow. Then, in problem 18.20, a mathematical test is described for rotational flow. It says,

“A flow is a potential flow (hence irrotational) if ##\oint \vec V \cdot \vec{ds} =0## for every closed path in the field.”

In problem 18.21, you want to show that the flow shown in Fig. 18-20 is rotational. So, you need to show that there exists a closed path for which ##\oint \vec V \cdot \vec{ds} \neq 0##.

1701118463961.png


In the figure, the flow is horizontal everywhere. From the spacing of the lines of flow, you can see that the speed changes as you move transversely to the direction of flow. This is the "velocity gradient in the transverse direction" mentioned in the problem statement. Can you visualize a closed path for which ##\oint \vec V \cdot \vec{ds} \neq 0##?
 
Thanks to Tsny and pasmith for help with this! Will do Problem 18.20 as suggested.
Ben2
 

Similar threads

Replies
16
Views
2K
Replies
4
Views
901
Replies
6
Views
2K
Replies
57
Views
6K
Replies
38
Views
3K
Replies
1
Views
1K
Replies
30
Views
2K
Replies
5
Views
2K
Back
Top