howabout1337
- 30
- 0
How can I show that ##\int_0^\infty e^{-nt}\,t^{x-1}\,dt=\Gamma(x)\,n^{-x}\,## for ##x \geq 1\,##?
Last edited by a moderator:
is the ##t'## in ##t=n t'## equivalent to ##dt/dx##?Charles Link said:It would help if you included the equation ## \Gamma(x)=\int\limits_{0}^{+\infty} e^{-t} \, t^{x-1} \, dt ## that I found in Wikipedia. I think all you need to do is let ## t=n t' ##.
With ## t=nt' ##, you have ## dt=n \, dt' ##. (The Wikipedia article actually had ## \Gamma(z) ##, and their integration was done over ## x ##, but changing the letters doesn't change the mathematics). For the case at hand, ##t ## is unrelated to ## x ##, and ## dt/dx ## really has no meaning. (Note also, once you substitute in ## t=nt' ##, you are completely free to change the ## t' ## back to the letter ## t ##).howabout1337 said:is the ##t'## in ##t=n t'## equivalent to ##dt/dx##?
I ran through it, I got the equation. Does letting ## t=nt' ## change the equation? Can I arbitrarily do this?Charles Link said:With ## t=nt' ##, you have ## dt=n \, dt' ##. (The Wikipedia article actually had ## \Gamma(z) ##, and their integration was done over ## x ##, but changing the letters doesn't change the mathematics). For the case at hand, ##t ## is unrelated to ## x ##, and ## dt/dx ## really has no meaning. (Note also, once you substitute in ## t=nt' ##, you are completely free to change the ## t' ## back to the letter ## t ##).
Basically you are showing that ## \Gamma(x)=n^x \, \int\limits_{0}^{+\infty} e^{-nt} \, t^{x-1} \, dt ##, and showing that the ## n ## that appears on the right side of this last equation has no effect on the equation. It turns out, you can set ## n ## equal to any number you want (Editing: It appears that ## n ## must be positive or you have an ## n^x ## that would be hard to define). ## n ## is a constant, but that's all you know about ## n ##. The substitution ## t=t'/n ## is completely legitimate, and then ## dt= dt' /n ##, and the limits of the integral are left unchanged. (The substitution is ## t=t'/n ## if you begin with this expression that contains ## n^x ##).howabout1337 said:I ran through it, I got the equation. Does letting ## t=nt' ## change the equation? Can I arbitrarily do this?
Charles Link said:Basically you are showing that ## \Gamma(x)=n^x \, \int\limits_{0}^{+\infty} e^{-nt} \, t^{x-1} \, dt ##, and showing that the ## n ## that appears on the right side of this last equation has no effect on the equation. It turns out, you can set ## n ## equal to any number you want (Editing: It appears that ## n ## must be positive or you have an ## n^x ## that would be hard to define). ## n ## is a constant, but that's all you know about ## n ##. The substitution ## t=t'/n ## is completely legitimate, and then ## dt= dt' /n ##, and the limits of the integral are left unchanged. (The substitution is ## t=t'/n ## if you begin with this expression that contains ## n^x ##).
The answer is no, it doesn't change what it represents, but it makes it unnecessarily more complicated. Even in the original form that you have, the ## n ## is unnecessary, and setting it equal to 1 simplifies the expression. ## \\ ## Editing: One other comment is that ## n ## needs to be positive for a second reason: (It was previously pointed out that ## n^x ## could become ambiguous if ## n ## were negative). A second reason is that ## e^{-nt} ## would be ## e^{+|n|t} ##, and the integral would diverge with the exponential becoming arbitrarily large.howabout1337 said:Does defining t as something else related to n such ## t=t'/n^2 ## or ## t=2t'/n ## for any purpose changes the equation in different ways?