I [Signal and system] Function with fourier series a[k] = 1

Duke Le
Messages
7
Reaction score
0
We have:
Period T = 4, so fundamental frequency w0 = pi/2.
This question seems sooo easy. But when I use the integral:

x(t) = Σa[k] * exp(i*k*pi/2*t).
I get 1 + sum(cos(k*pi/2*t)), which does not converge.

Where did I went wrong ?
Thanks a lot for your help.
 
Last edited:
Mathematics news on Phys.org
Hello Duke,

Duke Le said:
We have T = 4, so w0 = pi/2.

I have no idea :wink: what your T and w0 stand for. Especially T. Have you heard of the dirac delta function ? Familiar with distributions ?
 
BvU said:
Hello Duke,
I have no idea :wink: what your T and w0 stand for. Especially T. Have you heard of the dirac delta function ? Familiar with distributions ?
Thanks for replying! I edited the post. So the answer for this question is:
y(t) = ∑(delta(t - 4k))
From y(t) i can show that a[k] = 1 for all k. But I couldn't find y(t) given that a[k] = 1 since it didn't converge.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top