MHB Similar Matrices: Are Eigenvalues the Same?

Click For Summary
If matrices A and B are similar, they share the same eigenvalues, but the converse is not necessarily true. An example demonstrates that matrices can have the same eigenvalue without being similar. Specifically, while matrix A has a repeated eigenvalue of 1, matrix B has eigenvalues of 1 and -1, showing they are not similar. Additionally, matrix C shares the same repeated eigenvalue with A but is also not similar to it. Thus, having the same eigenvalues does not imply similarity between matrices.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
saravananbs's question from Math Help Forum,

if A and B are similar matrices then the eigenvalues are same. is the converse is true? why?
thank u

Hi saravananbs,

No. The converse is not true in general. Take the two matrices, \(A=\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\mbox{ and }B=\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}\).

\[\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=1.\begin{pmatrix}1 \\ 1\end{pmatrix}\]

\[\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=1.\begin{pmatrix}1 \\ 1\end{pmatrix}\]

Therefore both matrices have the same eigenvalue 1. However it can be easily shown that \(A\mbox{ and }B\) are not similar matrices.
 
Mathematics news on Phys.org
Sudharaka said:
saravananbs's question from Math Help Forum,
Hi saravananbs,

No. The converse is not true in general. Take the two matrices, \(A=\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\mbox{ and }B=\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}\).

\[\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=1.\begin{pmatrix}1 \\ 1\end{pmatrix}\]

\[\begin{pmatrix}0 & 1\\1 & 0\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=1.\begin{pmatrix}1 \\ 1\end{pmatrix}\]

Therefore both matrices have the same eigenvalue 1. However it can be easily shown that \(A\mbox{ and }B\) are not similar matrices.
That example does not really work, because $A$ and $B$ do not have the same eigenvalues: $A$ has a (repeated) eigenvalue 1, whereas the eigenvalues of $B$ are 1 and –1.

However, if $C = \begin{pmatrix}1 & 1 \\0 & 1\end{pmatrix}$, then $A$ and $C$ have the same eigenvalues (namely 1, repeated), but are not similar.
 
Opalg said:
That example does not really work, because $A$ and $B$ do not have the same eigenvalues: $A$ has a (repeated) eigenvalue 1, whereas the eigenvalues of $B$ are 1 and –1.

However, if $C = \begin{pmatrix}1 & 1 \\0 & 1\end{pmatrix}$, then $A$ and $C$ have the same eigenvalues (namely 1, repeated), but are not similar.

Thanks for correcting that. Of course I now see that only the eigenvalue 1 is common to both \(A\) and \(B\).