Simple Fluid mechanics question, Need Help

AI Thread Summary
The discussion centers on the confusion between calculating the force exerted by water on a vertical wall using gauge pressure versus absolute pressure. One problem requires the total force, which includes both the force from the water and atmospheric pressure, while the other focuses solely on the force exerted by the water itself, using gauge pressure. Gauge pressure measures the pressure relative to atmospheric pressure, while absolute pressure includes atmospheric pressure. The key distinction lies in whether the problem asks for the total force or just the force due to the water. Understanding this difference clarifies why the two problems are solved differently.
Bassel
Messages
9
Reaction score
0
I've been solving fluid mechanics problems and i encountered two problems that made no sense to me. Both problems that ask about the force done by water on a VERTICAL wall under the level of water. One problem was solved by taking the integral of the gauge pressure and multiplying it by the area while the other was solved by also taking the integral of the gauge pressure and multiplying it by the area of the wall but after finding this value, the force due to atmospheric pressure was added. What happened There?? why two similar cases are solved in different meanings, anyone got any idea?
 
Physics news on Phys.org
The only difference that I can see between these two scenarios is that one is using gage pressure and the other is using absolute pressure. Maybe the problem statements have a hint as to why they were solved that way? My only guess as to why this was the case was possibly because one problem statement specifically asked for the force done by the water where as the other one asked for the total force?
 
YESS EXACTLY after looking to the problems again i realized that one asked about the total force and the other asked about the force done by water. but the problem is i don't know the difference and that is why i didn't realize the difference. Can You please give me a summary about the differences please between asking about force done by water and total force ? thanks a lot man sorry for bothering you.
 
Atmospheric pressure is the pressure caused by the atmosphere which is typically considered to be ~101325 Pa. Gage pressure is basically the difference between this number and the pressure that the point of interest is at since "normal conditions" are at atmospheric pressure. The force that is being applied only from the water is the force from the gage pressure; however, this value does not take into account the pressure that the object would typically experience if the water wasn't there and therefore does not take into account this force. If there was no water the wall would still see some force on it because of atmospheric pressure so if you want to find the total force you have to take that force into account as well. The main difference is one only asks for the change in force under normal circumstances where as the other one asks you for the total.
 
  • Like
Likes 1 person
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top