Simple integral, can't get the right answer....

  • Thread starter Thread starter Addez123
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Homework Help Overview

The discussion revolves around the integral $$\int \frac y {x^2+y^2} dx$$, which involves concepts from calculus, specifically integration techniques and the interpretation of variables in integrals.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the validity of different approaches to solving the integral, including u-substitution and integration by parts. There is a debate over the treatment of the variable \(y\) and whether it should be considered constant or dependent on \(x\). Some participants question the correctness of the original poster's interpretation and the implications of treating \(y\) as a constant.

Discussion Status

The discussion is ongoing, with participants providing insights and questioning each other's reasoning. There is no clear consensus, but various interpretations of the integral and its components are being explored.

Contextual Notes

There is a noted complexity regarding the roles of \(x\) and \(y\) in the integral, leading to confusion about the appropriate methods for integration. The original poster's assumptions about the variables are under scrutiny, and some participants suggest that clarifying these roles could prevent misunderstandings.

Addez123
Messages
199
Reaction score
21
Homework Statement
$$\int \frac y {x^2+y^2} dx$$
Relevant Equations
Just math
$$\int \frac y {x^2+y^2} dx$$
$$\frac 1 y * \int \frac 1 {\frac {x^2}{y^2} + 1} dx = \frac 1 y * atan(x/y)$$

The answer is just atan(x/y), which you get using u-substitution but I honestly don't see why I don't get it doing it the normal way.
 
Physics news on Phys.org
It's because ##\displaystyle{\int} \dfrac{1}{\frac{x^2}{y^2} + 1} dx \neq \mathrm{arctan}\left( \dfrac{x}{y} \right)##. It would be correct to say, for example,\begin{align*}
\int \dfrac{1}{\frac{x^2}{y^2} + 1} dx = y \int \dfrac{1}{\frac{x^2}{y^2} + 1} d\left( \frac{x}{y} \right) = y\mathrm{arctan}\left( \frac{x}{y} \right)
\end{align*}
 
Last edited:
  • Like
  • Skeptical
Likes   Reactions: Delta2, FactChecker, Orodruin and 2 others
It was already in standard integral format. Try differentiating your answer and you'll see that's not right.
 
  • Like
Likes   Reactions: FactChecker
I don't understand this thread. According to the OP
Addez123 said:
Homework Statement:: ##I = { \large \int \frac y {x^2+y^2} } dx~\dots~##
Since
##{~~~~}x = \left \{ \begin{align} & \text {variable of integration } \nonumber \\ &~~ \text {and is therefore the} \nonumber \\ & ~\text {independent variable} \nonumber \end{align} \right \}~~\Rightarrow~## ##\left \{ \begin{align} & y = y(x)~\text {because}~y~\text {is} \nonumber \\ & \text {normally used as the} \nonumber \\ & ~ \text {dependent variable} \nonumber \end{align} \right \}##
then
##{~~~~}I = { \large \int \frac y {x^2+y^2} } dx~\Rightarrow~I = { \large \int \frac {y(x)} {x^2+y^2} } dx##
so that integration by parts, wherein the right-hand side is a function of the independent variable only, no longer applies. But according to the forum mentor in post #2,
ergospherical said:
##\dots##. It would be correct to say, for example,\begin{align*}
\int \dfrac{1}{\frac{x^2}{y^2} + 1} dx = y \int \dfrac{1}{\frac{x^2}{y^2} + 1} d\left( \frac{x}{y} \right) = y\mathrm{arctan}\left( \frac{x}{y} \right)
\end{align*}
indicating that ##~y~## is actually a constant since
##{~~~~}d \left( { \large \frac {x}{y} } \right) = { \large \frac {dx}{y} }~\Rightarrow~y { \large \int } \dfrac{1}{\frac{x^2}{y^2} + 1} d\left( { \large \frac{x}{y} } \right) = { \large \int } \dfrac{1}{\frac{x^2}{y^2} + 1} dx##
If that is the case, then the original integral should have been written as
##{~~~~}I = { \large \int \frac k {x^2+k^2} } dx~\Leftarrow~k = \rm {constant}##
right at the start, or early on a remark posted by people who know more, in order to avoid confusion and waste of time.
 
  • Like
Likes   Reactions: Delta2

Similar threads

Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
20
Views
2K
Replies
6
Views
2K