(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find by letting [tex]U^2=(4 + x^2) [/tex]the following [tex] \int_0^2\frac{x}{\sqrt{4 + x^2}}dx[/tex]?

I can solve it by letting [tex]\mbox{x=2} tan(\theta)[/tex], But I want to be able to do it by substitution.

3. The attempt at a solution

[tex] \frac{du}{dx}=\frac{d\sqrt{(4+x^2)}}{dx}=\frac{x}{\sqrt{4+x^2}}\mbox{, therefore du}=\frac{x}{u^\frac{1}{2}}\times dx\\[/tex] Therefore the integral is [tex] \int_{x=0}^{x=2}\frac{1}{u^\frac{1}{2}}du=[/tex]0.26757, it should be [tex] 2(\sqrt{2}-1)[/tex]. Can you tell me where I went wrong. Thanks for the help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Simple Integration by substitution

**Physics Forums | Science Articles, Homework Help, Discussion**