dexter90
- 14
- 0
Hello.
I have equation:
\frac{\partial T}{\partial t}-\frac{1}{2}\cdot \frac{(\partial)^2 T}{\partial x^2}=0
I calculated determinant:
\Delta=(-\frac{1}{2})^2)-4\cdot 1 \cdot 0 \Rightarrow \sqrt{\Delta}=\frac{1}{2} \\ (\frac{dT}{dt})_{1}=-\frac{1}{4} \\ (\frac{dT}{dt})_{2}=\frac{1}{4}
next
T=-\frac{1}{4}t+C_{1} \Rightarrow T+\frac{1}{4}t=C_{1} \\ T=\frac{1}{4}t+C_{2} \Rightarrow T-\frac{1}{4}t=C_{2}
I am add a new coefficients \eta and \xi, then
\xi=\frac{1}{4}t+T\\ \eta=-\frac{1}{4}t+T
Then I calculated matrix jacobian's =\frac{1}{2}
Good?
I greet
Post edited
I have equation:
\frac{\partial T}{\partial t}-\frac{1}{2}\cdot \frac{(\partial)^2 T}{\partial x^2}=0
I calculated determinant:
\Delta=(-\frac{1}{2})^2)-4\cdot 1 \cdot 0 \Rightarrow \sqrt{\Delta}=\frac{1}{2} \\ (\frac{dT}{dt})_{1}=-\frac{1}{4} \\ (\frac{dT}{dt})_{2}=\frac{1}{4}
next
T=-\frac{1}{4}t+C_{1} \Rightarrow T+\frac{1}{4}t=C_{1} \\ T=\frac{1}{4}t+C_{2} \Rightarrow T-\frac{1}{4}t=C_{2}
I am add a new coefficients \eta and \xi, then
\xi=\frac{1}{4}t+T\\ \eta=-\frac{1}{4}t+T
Then I calculated matrix jacobian's =\frac{1}{2}
Good?
I greet
Post edited
Last edited: