MHB Simplification of Powers of Five

  • Thread starter Thread starter CSmith1
  • Start date Start date
AI Thread Summary
The discussion focuses on expressing various values in the form of 5^r, where r is a rational number. Participants correctly identify the values of r for several expressions, such as r=0 for 1, r=-1 for 1/5, r=7/2 for (sqrt(5))^7, r=2/3 for the cube root of 25, r=3/2 for the square root of 125, and r=-1/2 for 1/sqrt(5). There is an emphasis on the importance of presenting answers in the specified format, as examiners may deduct points for not doing so. The conversation also touches on the nuances of exponentiation and the definition of sequences related to powers.
CSmith1
Messages
39
Reaction score
0
write in the form 5^r, where r is a rational number.

1.)1
2.)1/5
3)(square root 5)^7
4.)3 suare root 25
5.)square root 125
6.)1/ square roor 5



1. r = 0 (anything to the 0th power is 1)

2. y = 5^x
1/5 = 5^x
x = -1

3. sqrt(5)^7 = 5^x
x = 7/2
4. cube root (25) = 5^x --->
25 ^1/3 = 5^x
25= 5^2
x = 2/3

5. sqrt(125) = 5^x
125 = 5^3
125^1/2 = 5^x
5^3/2 = 5^x
x = 3/2

6. 1/sqrt(5) = 5^x
5^-1/2 = 5^x
x = -1/2
 
Mathematics news on Phys.org
CSmith said:
write in the form 5^r, where r is a rational number.

1.)1
2.)1/5
3)(square root 5)^7
4.)3 suare root 25
5.)square root 125
6.)1/ square roor 5



1. r = 0 (anything to the 0th power is 1)

2. y = 5^x
1/5 = 5^x
x = -1

3. sqrt(5)^7 = 5^x
x = 7/2
4. cube root (25) = 5^x --->
25 ^1/3 = 5^x
25= 5^2
x = 2/3

5. sqrt(125) = 5^x
125 = 5^3
125^1/2 = 5^x
5^3/2 = 5^x
x = 3/2

6. 1/sqrt(5) = 5^x
5^-1/2 = 5^x
x = -1/2

Mostly correct (you have the value of all your exponents correct). What you need to watch out for is that the question states write in the form 5^r... meaning your answers should be written as $5^r$ instead of working out r and leaving it there.
If I take your first one as an example you correctly figured out that r=0 so you'd put $5^0$ as your answer instead of 0.

I know it seems trivial (and it probably is) but that's the sort of thing examiners love taking away an answer mark for (Devil)
 
CSmith said:
1. r = 0 (anything to the 0th power is 1)

Except $ \displaystyle 0^0 $ which is undefined...
 
CSmith said:
1. r = 0 (anything to the 0th power is 1)

What CSmith has written is correct even if some care has to be used in order to avoid confusion. As explained in... http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/

... the exponential sequence on base $\displaystyle\alpha$ the general term of which is usually written as $\displaystyle\alpha^{n}$ is defined by the recursive relation…

$\displaystyle a_{n+1}= \alpha\ a_{n}\ ,\ a_{0}=1\ ,\ \alpha \in \mathbb{R}$ (1)

... so that the sequence $\displaystyle \alpha^{n}$ is $1\ ,\ \alpha\ ,\ \alpha^{2}\ ,\ ...$. That is true of course also for $\displaystyle \alpha=0$ so that the sequence $\displaystyle 0^{n}$ is $1\ ,\ 0\ ,\ 0\ ,\ ...$.

In a fully different situation we are when if we have to valuate the limit...

$\displaystyle \lim_{x \rightarrow 0} \alpha(x)^ {\gamma(x)}$ (2)

... where $\alpha(0)=\gamma(0)=0$. Here the term indeterminate form is correctly used because the limit (2) is not 'automatically' equal to 1 in any case...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
41
Views
5K
Replies
59
Views
2K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
24
Views
3K
Replies
2
Views
1K
Replies
1
Views
5K
Replies
2
Views
1K
Back
Top